ModularFunctionExpansionsAtCusps(C, cusps)ΒΆ

qetamodfunexp.spad line 118 [edit on github]

ModularFunctionExpansionsAtCusps(C, L, cusps) represents the algebra of eta-quotients that are modular functions for a certain Gamma_0(m) and have only poles at the given cusps.

0: %

from QEtaAlgebra C

1: %

from QEtaAlgebra C

*: (%, %) -> %

from QEtaAlgebra C

*: (C, %) -> %

from QEtaAlgebra C

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from QEtaAlgebra C

-: % -> %

from QEtaAlgebra C

-: (%, %) -> %

from QEtaAlgebra C

/: (%, %) -> % if C has Field

from XEtaGradedAlgebra C

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from QEtaAlgebra C

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: XHashTable(Cusp, QEtaLaurentSeries C) -> %

If t is a hashtable containing (for each cusp of Gamma_0(m) the series expansions at the cusps, then etaQuotient(t) creates a data structure that can be used for computations.

hash: % -> SingleInteger

from SetCategory

hashUpdate!: (HashState, %) -> HashState

from SetCategory

latex: % -> String

from SetCategory

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

maxIndex: () -> PositiveInteger

from XEtaGradedAlgebra C

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

qetaGrade: (%, PositiveInteger) -> Integer

from XEtaGradedAlgebra C

qetaGrade: (%, PositiveInteger, Integer) -> Integer

from XEtaGradedAlgebra C

qetaGrades: % -> List Integer

from XEtaGradedAlgebra C

qetaIndex: % -> PositiveInteger

from XEtaGradedAlgebra C

qetaLeadingCoefficient: (%, PositiveInteger) -> C

from XEtaGradedAlgebra C

recip: % -> Union(%, failed)

from MagmaWithUnit

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from MagmaWithUnit

series: (%, PositiveInteger) -> QEtaLaurentSeries C

series(x, n) returns the series corresponding to the n-th index. Indices can run from 1 to maxIndex().

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

traceout: NonNegativeInteger -> % -> OutputForm

from QEtaAlgebra C

zero?: % -> Boolean

from QEtaAlgebra C

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

CancellationAbelianMonoid

CoercibleTo OutputForm

Magma

MagmaWithUnit

Monoid

QEtaAlgebra C

SemiGroup

SetCategory

XEtaGradedAlgebra C