QEtaCofactorConditionsΒΆ
qetacofactorconditions.spad line 143 [edit on github]
undocumented
- conditionEvenMultiplier?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionEvenMultiplier?(nn, rspec, m)returnstrueif various divisibility conditions are fulfilled. This corresponds to eqref{eq:even-m} and eqref{eq:conditionEvenMultiplier?(nn,rspec,m)} in qeta.tex fourth condition onpage~241of cite{Radu_RamanujanKolberg_2015} (Definition 35). Same as condition 9 on page 37 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019}.
- conditionGSigma0?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionGSigma0?(nn, rspec, m)returnstrueif (kappa(m)*nn)*sum(g*e/d for [d,g,e] in properGeneralizedPartsrspec) = 0 mod 2. This corresponds to condition 3 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019}. See eqref{eq:conditionGSigma0?(nn,rspec,m)}
- conditionMmN?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionMmN(
nn, rspec,m) returnstrueif every divisordof mm=level(rspec) (for whichr_dis non-zero) is also a divisor ofm*Nwhere r=pureExponents(rspec). This corresponds to condition (4.7) in cite{Radu_PhD_2010} and in equation eqref{eq:delta|M=>delta|mN} in qeta.tex.
- conditionNDivisor?: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Boolean
conditionNDivisor?(nn, rspec, m, t)returnstrueif the expression (24*m*mm)/gcd(24*mm*kappa(m)*alpha, 24*m*mm) is a divisor ofnnwhere alpha=rhoInfinity(rspec) +t. This corresponds to condition 8 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019} and to eqref{eq:w|N} and eqref{eq:conditionNDivosor?(nn,rspec,m,t)} in qeta.tex and to the third condition onpage~241of cite{Radu_RamanujanKolberg_2015} (Definition 35).
- conditionOrbitLength?: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Boolean
conditionOrbitLength?(nn, rspec, m, t)returnstrueif the conditions for an orbit of length 1 are satisfied. This corresponds to condition 7 on page 6 of Chapter 2 and to condition 10 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019}.
- conditionPrimeDivisors?: (PositiveInteger, PositiveInteger) -> Boolean
conditionExponentSum?(
nn,m) returnstrueif every prime divisor ofmis also a divisor ofnn. This corresponds to (28) in cite{Radu_RamanujanKolberg_2015} and to eqref{eq:p|m=>p|N} in qeta.tex.
- conditionRho0ProperGeneralized?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionRho0?(
nn, rspec,m) returnstrueif (kappa(m)*m*nn^2) * sum(e/d for [d,g,e] in properGeneralizedPartsx) = 0 mod 12. This corresponds to condition 5 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019}. See eqref{eq:conditionRho0ProperGeneralized?(nn,rspec,m)}.
- conditionRho0Pure?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionRho0?(
nn, rspec,m) returnstrueif (kappa(m)*m*nn^2/mm)*rho0(rspec) is an integer. This corresponds to eqref{eq:rv24} and eqref{{eq:conditionRho0Pure?(nn,mm,r,m)} in qeta.tex and to the first condition onpage~241of cite{Radu_RamanujanKolberg_2015} (Definition 35).
- conditionSumExponentsProperGeneralized?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionSumExponentsProperGeneralized?(nn, rspec, m)returnstrueif the sum of the entries ofrspeccorresponding to the exponents of properGeneralizedParts(rspec) multiplied by kappa(m)*nnis divisible by 4. This corresponds to condition 4 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019}. See eqref{eq:conditionSumExponentsProperGeneralized?(nn,rspec,m)}.
- conditionSumExponentsPure?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionSumExponentsPure?(nn, rspec, m)returnstrueif the sum of the entries of pureExponents(rspec) multiplied by kappa(m)*nnis divisible by 8 or (equivalently) if kappa(m)*nn*weight(rspec) is divisible by 4. This corresponds to eqref{eq:sum-r} in qeta.tex second condition onpage~241of cite{Radu_RamanujanKolberg_2015} (Definition 35).