QEtaCofactorConditionsΒΆ
qetacofactorconditions.spad line 143 [edit on github]
undocumented
- conditionEvenMultiplier?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionEvenMultiplier?(nn, rspec, m)
returnstrue
if various divisibility conditions are fulfilled. This corresponds to eqref{eq:even-m
} and eqref{eq:conditionEvenMultiplier?(nn
,rspec
,m
)} in qeta.tex fourth condition onpage~241
of cite{Radu_RamanujanKolberg_2015
} (Definition 35). Same as condition 9 on page 37 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019
}.
- conditionGSigma0?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionGSigma0?(nn, rspec, m)
returnstrue
if (kappa(m
)*nn
)*sum(g*e/d for [d
,g
,e
] in properGeneralizedPartsrspec
) = 0 mod 2. This corresponds to condition 3 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019
}. See eqref{eq:conditionGSigma0?(nn
,rspec
,m
)}
- conditionMmN?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionMmN(
nn
, rspec,m
) returnstrue
if every divisord
of mm=level(rspec) (for whichr_d
is non-zero) is also a divisor ofm*N
where r=pureExponents(rspec). This corresponds to condition (4.7) in cite{Radu_PhD_2010
} and in equation eqref{eq:delta|M=>delta|mN} in qeta.tex.
- conditionNDivisor?: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Boolean
conditionNDivisor?(nn, rspec, m, t)
returnstrue
if the expression (24*m*mm)/gcd(24*mm*kappa(m
)*alpha, 24*m*mm) is a divisor ofnn
where alpha=rhoInfinity(rspec
) +t
. This corresponds to condition 8 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019
} and to eqref{eq:w|N} and eqref{eq:conditionNDivosor?(nn
,rspec
,m
,t
)} in qeta.tex and to the third condition onpage~241
of cite{Radu_RamanujanKolberg_2015
} (Definition 35).
- conditionOrbitLength?: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Boolean
conditionOrbitLength?(nn, rspec, m, t)
returnstrue
if the conditions for an orbit of length 1 are satisfied. This corresponds to condition 7 on page 6 of Chapter 2 and to condition 10 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019
}.
- conditionPrimeDivisors?: (PositiveInteger, PositiveInteger) -> Boolean
conditionExponentSum?(
nn
,m
) returnstrue
if every prime divisor ofm
is also a divisor ofnn
. This corresponds to (28) in cite{Radu_RamanujanKolberg_2015
} and to eqref{eq:p|m=>p|N} in qeta.tex.
- conditionRho0ProperGeneralized?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionRho0?(
nn
, rspec,m
) returnstrue
if (kappa(m
)*m*nn^2
) * sum(e/d for [d
,g
,e
] in properGeneralizedPartsx
) = 0 mod 12. This corresponds to condition 5 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019
}. See eqref{eq:conditionRho0ProperGeneralized?(nn
,rspec,m
)}.
- conditionRho0Pure?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionRho0?(
nn
, rspec,m
) returnstrue
if (kappa(m
)*m*nn^2/mm)*rho0
(rspec) is an integer. This corresponds to eqref{eq:rv24
} and eqref{{eq:conditionRho0Pure?(nn
,mm
,r
,m
)} in qeta.tex and to the first condition onpage~241
of cite{Radu_RamanujanKolberg_2015
} (Definition 35).
- conditionSumExponentsProperGeneralized?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionSumExponentsProperGeneralized?(nn, rspec, m)
returnstrue
if the sum of the entries ofrspec
corresponding to the exponents of properGeneralizedParts(rspec
) multiplied by kappa(m
)*nn
is divisible by 4. This corresponds to condition 4 on page 37 of Chapter 10 of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019
}. See eqref{eq:conditionSumExponentsProperGeneralized?(nn
,rspec
,m
)}.
- conditionSumExponentsPure?: (PositiveInteger, QEtaSpecification, PositiveInteger) -> Boolean
conditionSumExponentsPure?(nn, rspec, m)
returnstrue
if the sum of the entries of pureExponents(rspec
) multiplied by kappa(m
)*nn
is divisible by 8. This corresponds to eqref{eq:sum-r
} in qeta.tex second condition onpage~241
of cite{Radu_RamanujanKolberg_2015
} (Definition 35).