QEtaCofactorSpaceΒΆ
qetacofactorspace.spad line 152 [edit on github]
undocumented
- alphaInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, List NonNegativeInteger) -> Integer
alphaInfinity(sspec,rspec,m,orb)implements the definition eqref{eq:alphabarInfinity} and eqref{eq:alphaInfinity}, i.e. the definition of Radu in cite{Radu:RamanujanKolberg:2015},DOI=10.1016/j.jsc.2017.02.001, http://www.risc.jku.at/publications/download/risc_5338/DancingSambaRamanujan.pdfand can also be extracted from from formula (10.4) of cite{Chen+Du+Zhao:FindingModularFunctionsRamanujan:2019} when the respective cofactor part is taken into account. Note that it does not agree with alpha(t) as defined in cite{Chen+Du+Zhao:FindingModularFunctionsRamanujan:2019}.
- etaCofactorSpace0: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Record(indices: List List Integer, particular: Union(Vector Integer, failed), basis: List Vector Integer)
etaCofactorSpace0(nn,rspec,m,t)returns a vectorvand the basis of a space such that #v=#divisors(nn) and modularGamma0?(nn,members(s),rspec,m,t) istruefor anys=v+ reduce(_+, [z.i* basis.iforiin 1..#basis]) and any sufficiently long listzof integers. The function fails, if there is no such solution. The indices part of the result is a list of divisors ofnnwhere each divisor is represented as a one-element list.
- etaCofactorSpace0System: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Record(comatrix: Matrix Integer, rhs: Vector Integer)
etaCofactorSpace0System(nn, rsoec, m, t)returns a matrix mat and a vectorvsuch that for the integer solutionssof the equation mat*s=v it holds modularGamma0?(ssoec,rspec,m,t) where sspec results from the list of the first #divisors(nn) entries ofs.
- etaCofactorSpace1: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Record(indices: List List Integer, particular: Union(Vector Integer, failed), basis: List Vector Integer)
etaCofactorSpace1(nn,rspec,m,t)returnsetaCofactorSpace1(nn,rspec,m,t,idxs) for idxs=generalizedEtaFunctionIndices(nn)$QETAAUX.
- etaCofactorSpace1: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger, List List Integer) -> Record(indices: List List Integer, particular: Union(Vector Integer, failed), basis: List Vector Integer)
etaCofactorSpace1(nn,rspec,m,t,idxs)returns a vectorvand the basis of a space such that #v=#idxs and modularGamma1?(ssepc,rspec,m,t) istruefor any sbar =v+ reduce(_+, [z.i* basis.iforiin 1..#basis]) and any sufficiently long listzof integers. The function fails, if there is no such solution. The indices part of the result is equal toidxsand corresponds to the entries of the solution vectors. If idxs=[] then the computation is done for idxs=generalizedEtaFunctionIndices(nn)$QETAAUX..
- etaCofactorSpace1System: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Record(comatrix: Matrix Integer, rhs: Vector Integer)
etaCofactorSpace1System(nn, rspec, m, t)returns a matrix mat and a vectorvsuch that for the integer solutionssof the equation mat*s=v it holds modularGamma1?(sspec,rspec,m,t) where sbar is the translation ofsinto a generalized eta-quotient specification, see generalizedEtaQuotientSpecification.