QEtaGroebner(C, E)ΒΆ
qetatool.spad line 456 [edit on github]
C: GcdDomain
E: OrderedAbelianMonoidSup with
directProduct: Vector NonNegativeInteger -> %
members: % -> List NonNegativeInteger
QEtaGroebner(C, E) is a wrapper around the GrobnerPackage. It basically converts given polynomials to elements in PolynomialRing(C, E), does some Groebner basis computation or reduction and then converts back.
- extendedNormalForm: (Polynomial C, List Polynomial C, List Symbol, Symbol, List Symbol) -> Polynomial C
extendedNormalForm(pol, gb, syms, f, gsyms)reducespolwith respect togband returns that reduced polynomial together with its relations in terms ofgb. The original polynomial is represented by the variablefand the Groebner basis elements by the variables gsyms. We assume that each of the polynomialspolandgbis indeed a polynomial insyms(and no other variables) and thatEcorresponds to exactly #syms variables.
- extendedNormalForm: (Polynomial C, List Polynomial C, List Symbol, Symbol, String) -> Polynomial C
extendedNormalForm(pol, gb, syms, f, g)returns extendedNormalForm(pol,gb,syms,f, gsyms) for gsyms:=indexedSymbols(g,\#gb).
- extendedNormalForms: (List Polynomial C, List Polynomial C, List Symbol, String, String) -> List Polynomial C
extendedNormalForms(lpol, gb, syms, f, g)returns [extendedNormalForm(p,gb,syms,f,g) forpinlpolforfin indexedSymbols(f, #lpol)]
- groebner: (List Polynomial C, List Symbol) -> List Polynomial C
groebner(lpol, syms)considers the list of polynomials as polynomials in syms, and computes a Groebner basis with respect to the order given byE. We assume that each of the polynomials inlpolis indeed a polynomial in syms (and no other variables) and thatEcorresponds to exactly #syms variables.
- groebnerExtend: (List Polynomial C, List Polynomial C, List Symbol) -> List Polynomial C
groebnerExtend(lpol, gb, syms)computes a Groebner basis of the union of lpos andgbunder the assumption thatgbis already a Groebner basiswrt. the order given byE. We assume that each of the polynomials inlpolandgbis indeed a polynomial in syms (and no other variables) and thatEcorresponds to exactly #syms variables.
- member?: (Polynomial C, List Polynomial C, List Symbol) -> Boolean
member?(p, gb, syms)returnstrueifpis in the ideal given by the (assumed degrevlex with respect to syms) Groebner basesgb.
- normalForms: (List Polynomial C, List Polynomial C, List Symbol) -> List Polynomial C
normalForms(lpol, gb, syms)reduces each polynomial fromlpolwith respect to the Groebner basis given bygb. We assume that each of the polynomials inlpolandgbis indeed a polynomial in syms (and no other variables) and thatEcorresponds to exactly #syms variables.