QEtaIdealHemmecke CΒΆ

qetaih.spad line 109 [edit on github]

QEtaIdealHemmecke implements functions to compute an ideal of relations among Dedekind eta-functions of level N. The computation of an algebra basis of eta-quotient of level N is done in an extended way so that there is no need to compute a Groebner basis of the relations among the eta-quotions in order to represent them in terms of the input eta-quotients.

etaLaurentIdealGenerators: (PositiveInteger, List QEtaSpecification, List Polynomial C) -> List Polynomial C

from QEtaIdealCategory C

etaLaurentIdealGenerators: PositiveInteger -> List Polynomial C

from QEtaIdealCategory C

etaQuotientIdealGenerators: (PositiveInteger, List QEtaSpecification) -> List Polynomial C

from QEtaIdealCategory C

etaQuotientIdealGenerators: PositiveInteger -> List Polynomial C

from QEtaIdealCategory C

etaRelations: (PositiveInteger, List Polynomial C) -> List Polynomial C

from QEtaIdealCategory C

etaRelations: PositiveInteger -> List Polynomial C

from QEtaIdealCategory C

laurentRelations: (List Symbol, List Symbol) -> List Polynomial C

from QEtaIdealCategory C

laurentRelations: PositiveInteger -> List Polynomial C

from QEtaIdealCategory C

relationsIdealGenerators: List Finite0Series C -> List Polynomial C

from QEtaIdealCategory C

QEtaIdealCategory C