QEtaIdealHemmecke QMODΒΆ
qetaih.spad line 100 [edit on github]
QMOD: QEtaModularCategory
QEtaIdealHemmecke implements functions to compute an ideal of relations among Dedekind eta-functions of level N
. The computation of an algebra basis of eta-quotient of level NN
is done in an extended way so that there is no need to compute a Groebner basis of the relations among the eta-quotions in order to represent them in terms of the input eta-quotients.
- algebraicRelations: (List List Integer, List Polynomial Integer, Character) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaLaurentIdealGenerators: (List List Integer, List QEtaSpecification, List Polynomial Integer) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaLaurentIdealGenerators: (PositiveInteger, List List Integer) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaLaurentIdealLists: (List List Integer, List QEtaSpecification, List Polynomial Integer) -> List List Polynomial Integer
from QEtaIdealCategory QMOD
- etaQuotientIdealGenerators: (PositiveInteger, List List Integer, String) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaQuotientIdealGenerators: (PositiveInteger, List QEtaSpecification, String) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaQuotientIdealGenerators: List QEtaSpecification -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaRelations: (List List Integer, List Polynomial Integer) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaRelations: (PositiveInteger, List List Integer, String) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- etaRelations: List List Integer -> List Polynomial Integer
from QEtaIdealCategory QMOD
- laurentRelations: (List Symbol, List Symbol) -> List Polynomial Integer
from QEtaIdealCategory QMOD
- relationsIdealGenerators: (PositiveInteger, List ModularFunctionQSeriesInfinity Fraction Integer) -> List Polynomial Integer
from QEtaIdealCategory QMOD
QEtaIdealCategory QMOD