QEtaIdealHemmecke QMODΒΆ

qetaih.spad line 100 [edit on github]

QEtaIdealHemmecke implements functions to compute an ideal of relations among Dedekind eta-functions of level N. The computation of an algebra basis of eta-quotient of level NN is done in an extended way so that there is no need to compute a Groebner basis of the relations among the eta-quotions in order to represent them in terms of the input eta-quotients.

algebraicRelations: (List List Integer, List Polynomial Integer, Character) -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaLaurentIdealGenerators: (List List Integer, List QEtaSpecification, List Polynomial Integer) -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaLaurentIdealGenerators: (PositiveInteger, List List Integer) -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaLaurentIdealLists: (List List Integer, List QEtaSpecification, List Polynomial Integer) -> List List Polynomial Integer

from QEtaIdealCategory QMOD

etaQuotientIdealGenerators: (PositiveInteger, List List Integer, String) -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaQuotientIdealGenerators: (PositiveInteger, List QEtaSpecification, String) -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaQuotientIdealGenerators: List QEtaSpecification -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaRelations: (List List Integer, List Polynomial Integer) -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaRelations: (PositiveInteger, List List Integer, String) -> List Polynomial Integer

from QEtaIdealCategory QMOD

etaRelations: List List Integer -> List Polynomial Integer

from QEtaIdealCategory QMOD

laurentRelations: (List Symbol, List Symbol) -> List Polynomial Integer

from QEtaIdealCategory QMOD

relationsIdealGenerators: (PositiveInteger, List ModularFunctionQSeriesInfinity Fraction Integer) -> List Polynomial Integer

from QEtaIdealCategory QMOD

QEtaIdealCategory QMOD