QEtaIdealHemmecke(C, QMOD)ΒΆ
qetaih.spad line 108 [edit on github]
QMOD: QEtaModularCategory
QEtaIdealHemmecke implements functions to compute an ideal of relations among Dedekind eta-functions of level N
. The computation of an algebra basis of eta-quotient of level NN
is done in an extended way so that there is no need to compute a Groebner basis of the relations among the eta-quotions in order to represent them in terms of the input eta-quotients.
- algebraicRelations: (List List Integer, List Polynomial C, Character) -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaLaurentIdealGenerators: (List List Integer, List QEtaSpecification, List Polynomial C) -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaLaurentIdealGenerators: (PositiveInteger, List List Integer) -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaLaurentIdealLists: (List List Integer, List QEtaSpecification, List Polynomial C) -> List List Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaQuotientIdealGenerators: List QEtaSpecification -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaQuotientMonomial: (QEtaSpecification, Character, Character) -> Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaQuotientMonomial: QEtaSpecification -> Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaRelations: (List List Integer, List Polynomial C) -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
- etaRelations: List List Integer -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
- laurentRelations: (List Symbol, List Symbol) -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
- relationsIdealGenerators: List Finite0Series C -> List Polynomial C
from QEtaIdealCategory(C, QMOD)
QEtaIdealCategory(C, QMOD)