QEtaModularEquation(C, AnC)¶
qetamodeqn.spad line 88 [edit on github]
C: Field
AnC: QEtaPowerGradedAlgebra C
QEtaModularEquation computes a modular polynomial with coefficients in ZZ of two functions with coefficients in C.
- evaluate: (SparseUnivariatePolynomial C, CachedPower AnC) -> AnC
evaluate(p,c)replace the variable inpby the series represented byc. Sloppyly: evaluate(p,c) computesp(c).
- modularPolynomial: (AnC, AnC) -> Polynomial Integer if C has convert: C -> Integer
modularPolynomial(x,y)returns modularPolynomial(x,y,[]).
- modularPolynomial: (AnC, AnC, List NonNegativeInteger) -> Polynomial Integer if C has convert: C -> Integer
modularPolynomial(x,y,d)computes a nonzero polynomial pol such that pol(x,y) is zero. It uses (up to) 4 numbers given by the listdto print intermediate debugging. The valuse are given to oneVerboseStep!.
- modularPolynomial: (List AnC, List Symbol) -> Polynomial C
modularPolynomial(gens,syms)returns modularPolynomial(gens,syms,[]).
- modularPolynomial: (List AnC, List Symbol, List NonNegativeInteger) -> Polynomial C
modularPolynomial(gens,syms,d)assumes that #gens=2=#syms and computes a nonzero polynomial pol in the variables given bysymssuch that eval(pol,syms,gens)=0. It uses (up to) 4 numbers given by the listdto print intermediate debugging. The valuse are given to oneVerboseStep!.
- modularPolynomial: List AnC -> Polynomial C
modularPolynomial(gens)returns modularPolynomial(gens,[“x”::Symbol,”y”::Symbol]).
- modularPolynomialCached: (AnC, AnC) -> Polynomial Integer if C has convert: C -> Integer
modularPolynomialCached(x,y)returns modularPolynomialCached(x,y,[]).
- modularPolynomialCached: (AnC, AnC, List NonNegativeInteger) -> Polynomial Integer if C has convert: C -> Integer
modularPolynomialCached(x,y,d)returns modularPolynomialCached(x,y,[“x”::Symbol,,”y”::Symbol],d).
- modularPolynomialCached: (AnC, AnC, List Symbol, List NonNegativeInteger) -> Polynomial Integer if C has convert: C -> Integer
modularPolynomialCached(x,y,syms,d)computes modularPolynomialCached([x,y],syms,d) and lifts the polynomial into a polynomial with integer coefficients.
- modularPolynomialCached: (List AnC, List Symbol) -> Polynomial C
modularPolynomialCached(gens,syms)returns modularPolynomialCached(gens,syms,[]).
- modularPolynomialCached: (List AnC, List Symbol, List NonNegativeInteger) -> Polynomial C
modularPolynomialCached(gens,syms,d)assumes that #gens=2=#syms and computes a nonzero polynomial pol in the variables given bysymssuch that eval(pol,syms,gens)=0. It uses (up to) 4 numbers given by the listdto print intermediate debugging. The valuse are given to oneVerboseStep!. It caches the intermediate products of the computation.
- modularPolynomialCached: List AnC -> Polynomial C
modularPolynomialCached(gens)returns modularPolynomialCached(gens,[“x”::Symbol,”y”::Symbol]).