QEtaModularEquationT trfs¶
qetamodeqn.spad line 393 [edit on github]
QEtaModularEquationT computes a modular polynomial with coefficients in ZZ of two functions with coefficients in QQ with the module vectors given by the order of the list trfs.
- modularPolynomial: (List XHashTable(Matrix Integer, QEtaLaurentSeries Fraction Integer), List Symbol, List NonNegativeInteger, String, String) -> Polynomial Integer
- modularPolynomial(gens,syms,d,dir,var)returns modularPolynomial(- gens,- syms,- d), if var=””. Otherwise, if there is a file given by filename(- dir,- var,”input”), then (before doing any actual compuation) its first line is read, converted to a polynomial and returned. If that file does not exist, then the directory is created, the modular polynomial is computed via poly:=modularPolynomial(- gens,- syms,- d) and its value is written to the file given above. The content of the file will look like “var:=poly;”.
- modularPolynomial: (ModularFunctionQSeries(Fraction Integer, trfs), ModularFunctionQSeries(Fraction Integer, trfs), PositiveInteger) -> Polynomial Integer
- modularPolynomial(x,y, p)returns modularPolynomial(- x,- y,- p,[])
- modularPolynomial: (ModularFunctionQSeries(Fraction Integer, trfs), ModularFunctionQSeries(Fraction Integer, trfs), PositiveInteger, List NonNegativeInteger) -> Polynomial Integer
- modularPolynomial(x,y,p,d)computes an integer polynomial pol such that pol(- x,- y) is zero when considered modulo the prime- p. It uses (up to) 4 numbers given by the list- dto print intermediate debugging. The valuse are given to oneVerboseStep!.
- modularPolynomial: (ModularFunctionQSeriesConstructor(Fraction Integer, QEtaTruncatedLaurentSeries Fraction Integer, trfs), ModularFunctionQSeriesConstructor(Fraction Integer, QEtaTruncatedLaurentSeries Fraction Integer, trfs), PositiveInteger) -> Polynomial Integer
- modularPolynomial(x,y, p)returns modularPolynomial(- x,- y,- p,[])
- modularPolynomial: (ModularFunctionQSeriesConstructor(Fraction Integer, QEtaTruncatedLaurentSeries Fraction Integer, trfs), ModularFunctionQSeriesConstructor(Fraction Integer, QEtaTruncatedLaurentSeries Fraction Integer, trfs), PositiveInteger, List NonNegativeInteger) -> Polynomial Integer
- modularPolynomial(x,y,p,d)computes an integer polynomial pol such that pol(- x,- y) is zero when considered modulo the prime- p. It uses (up to) 4 numbers given by the list- dto print intermediate debugging. The valuse are given to oneVerboseStep!.