QEtaModularGamma0

qetamod.spad line 332 [edit on github]

QEtaModularGamma0 provides functions to check modularity for Gamma0. TODO: conditionCoEtaQuotient?(nn,rspec,m,t) returns true iff all the conditions for the parameters are fulfilled. This checks whether (nn,rspec,m,t) is in Delta^* as defined in Definition~ref{def:condition-co-eta-quotient-gamma0} in qeta.tex and in Definition 35 of cite{Radu_RamanujanKolberg_2015} candidateLevelsCoEtaQuotient(rspec,m,t) returns an ascendingly sorted list of the nn up to 24*m*level(rspec) such that conditionCoEtaQuotient?(nn,rspec,m,t) is true, i.e. that (nn,rspec,m,t) is an element of Delta^* as defined in Definition~ref{def:condition-co-eta-quotient-gamma0}. matrixEtaOrderElement(nn,cusp,idx)=a_nn(c,delta)/24 where a_nn(di,dj) given by Notation 3.2.6 in cite{Ligozat_CourbesModulaires_1975} where di and dj run over all positive divisors of nn. The Ligozat matrix is A_N as described after Lemma 5.2 in cite{HemmeckeRadu_EtaRelations_2019}. The parameter idx corresponds to the index of a pure eta-quotient, i.e. it is of the form idx=[delta] with delta a divisor of nn. We assume that cusp=(a:c). matrixModular(nn,idxs) returns part of the matrix matrixModular(nn) corresponding to the divisors that are given through idxs (i.e. the order of the columns corresponds to what is given through idxs). Irrelevant rows in the rows specifying the square condition are removed. nn represents the level of $Gamma_0(nn)$ and idxs has the form [[d1],…,[dn]] where the di are (different) divisors of nn. See description for matrixModular(nn) for more information. minimalLevelCoEtaQuotient(rspec,m,t) returns the smallest nn of candidateLevalsCoEtaQuotient(rspec,m,t). Note that one might have to use a bigger nn, because the level might still be too small to find a cofactor an example is for rspec=[[1,-1],[7,1]], m=9, t=5 where this function returns 21, but one would have to use 42. modular?(sspec,rspec,m,t) returns true iff all the conditions of Theorem~ref{thm:RaduConditions} are fulfilled. Compare with modularGamma0? from QEtaAuxiliaryPackage.

candidateLevelsCoEtaQuotient: (QEtaSpecification, PositiveInteger, NonNegativeInteger) -> List PositiveInteger

from QEtaModularCategory

conditionCoEtaQuotient?: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Boolean

from QEtaModularCategory

cusps: PositiveInteger -> List Cusp

from QEtaModularCategory

cuspToMatrix: (PositiveInteger, Cusp) -> Matrix Integer

from QEtaModularCategory

etaCofactorSpace: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger, List List Integer) -> Record(indices: List List Integer, particular: Union(Vector Integer, failed), basis: List Vector Integer)

from QEtaModularCategory

etaCofactorSpaceSystem: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger, List List Integer) -> Record(qmat: Matrix Fraction Integer, zrels: Vector Integer, qrhs: Vector Fraction Integer)

from QEtaModularCategory

etaQuotientMonoidSystem: (PositiveInteger, List Cusp, List List Integer) -> Record(qmat: Matrix Fraction Integer, zrels: Vector Integer, qrhs: Vector Fraction Integer)

from QEtaModularCategory

genus: PositiveInteger -> NonNegativeInteger

from QEtaModularCategory

matrixEtaOrder: (PositiveInteger, List Cusp, List List Integer) -> Matrix Fraction Integer

from QEtaModularCategory

matrixEtaOrderElement: (PositiveInteger, Cusp, List Integer) -> Fraction Integer

from QEtaModularCategory

matrixEtaOrderFull: (PositiveInteger, List Cusp, List List Integer) -> Matrix Fraction Integer

from QEtaModularCategory

matrixEtaOrderRow: (PositiveInteger, Cusp, List List Integer) -> List Fraction Integer

from QEtaModularCategory

matrixLigozat: PositiveInteger -> Matrix Integer

matrixLigozat(n) returns the (n,n) matrix with entries a_m(di,dj) given by Notation 3.2.6 in cite{Ligozat_CourbesModulaires_1975} where di and dj run over all positive divisors of m. This matrix is A_N as described after Lemma 5.2 in cite{HemmeckeRadu_EtaRelations_2019}.

matrixLigozatElement: (PositiveInteger, Integer, Integer) -> Integer

matrixLigozatElement(nn, c, delta) computes an entry of the matrix of Ligozat corresponding to the index (c, delta) counted in divisors of nn.

matrixModular: (PositiveInteger, List List Integer) -> Matrix Fraction Integer

from QEtaModularCategory

minimalLevelCoEtaQuotient: (QEtaSpecification, PositiveInteger, NonNegativeInteger) -> PositiveInteger

from QEtaModularCategory

modular?: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Boolean

from QEtaModularCategory

modular?: QEtaSpecification -> Boolean

from QEtaModularCategory

modularOrbit: (QEtaSpecification, PositiveInteger, NonNegativeInteger) -> List NonNegativeInteger

from QEtaModularCategory

width: (PositiveInteger, Cusp) -> PositiveInteger

from QEtaModularCategory

width: (PositiveInteger, Matrix Integer) -> PositiveInteger

from QEtaModularCategory

QEtaModularCategory