QEtaModularLambdaTools CΒΆ
qetamodlambdatool.spad line 198 [edit on github]
QEtaModularLambdaTools provides functions for working with the modular lambda function.
- applyLambdaTransformation: (Matrix Integer, Fraction SparseUnivariatePolynomial C) -> Fraction SparseUnivariatePolynomial C
By https://fungrim.org/entry/099301/ we can easily get the expansion of the modular lambda function at any cusp/transformation. applyLambdaTransformation(
g,rf) replaces the variable ofrfby the respective rational function expression according to the transformation matrixg.
- evalAtModularLambda: Fraction SparseUnivariatePolynomial C -> QEtaLaurentSeries C if C has Field
evalAtModularLambda(rf)replaces the variable ofrfwith modularLambda() from the QFunctions package. The function caches its result.
- evalAtModularLambda: SparseUnivariatePolynomial C -> QEtaLaurentSeries C
evalAtModularLambda(pol)replaces the variable ofpolwith modularLambda() from the QFunctions package. The function caches its results.
- transformAtModularLambda: (Fraction SparseUnivariatePolynomial C, Matrix Integer, Matrix Integer, Fraction Integer) -> QEtaLaurentSeries C if C has Field
transformAtModularLambda(r,g,t,w)returns the series $r(lambda(g(ttau)))$ expressed in the variable $q^{frac{1}{w}}$ where $q=exp(piitau)$ and $t$ is the transformation $taumapstofrac{atau}{d}$ for some integers $a$ and $d$.