QEtaModularPackage QMODΒΆ
qetamodpkg.spad line 122 [edit on github]
QMOD: QEtaModularCategory
undocumented
- etaCofactorInfinity: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger, List List Integer) -> QEtaSpecification
etaCofactorInfinity(nn,rspec,m,t,idxs)
returns a specification sspec such that sspec has only indices fromidxs
, modular?(sspec,rspec
,m
,t
)$QMOD and etaQuotient(sspec,rspec
,m
,t
)$SymbolicModularEtaQuotient(QMOD) corresponds to a modular function with poles only at infinity and with smallest pole order.
- etaCofactorInfinitySpaceSystem: (List QEtaSpecification, List Integer, List Cusp) -> Record(zmat: Matrix Integer, zrels: Vector Integer, zrhs: Vector Integer)
etaCofactorInfinitySpaceSystem(bspecs,grds,spitzen)
returns a matrix A and a right-hand sidev
for a system A*x>=v where the right-hand side isgrds
(which is the expansion poleordersa
th the cuspsspitzen
and A is the expansion poleorders of the basis elements given bybspecs
. The rows are indexed by the cusps.
- qetaGrades: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> List Integer
qetaGrades(sspec,rspec,m,t)
returns qetaGrades(y
) where y=etaQuotient(sspec
,rspec
,m
,t
)$SymbolicModularEtaQuotient(QMOD).
- qetaGrades: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List Cusp) -> List Integer
qetaGrades(sspec,rspec,m,t,spitzen)
returns qetaGrades(y
) where y=etaQuotient(sspec
,rspec
,m
,t
,spitzen
) from SymbolicModularEtaQuotient(QMOD).
- qetaGrades: SymbolicModularEtaQuotient QMOD -> List Integer
qetaGrads(
y
) returns the poleorders of the modular function corresponding toy
. In the special case whene
is the expansion and qetaGrade(e
.c
) is less than 0 for every cuspc
in cusps(y
), the function returns a value of-1
for each cusp although this might not be thetrue
poleorder of the expansion, it rather is the value for the case thaty
represents zero. This special treatment avoids running into an infinite loop ify
represents the zero function.
- reduceSystem: Record(zmat: Matrix Integer, zrels: Vector Integer, zrhs: Vector Integer) -> Record(zmat: Matrix Integer, zrels: Vector Integer, zrhs: Vector Integer)
reduceSystem([A,v])
returns a matrixB
and a right-hand sidew
such that A*x>=
v
andB*x
>=
w
have the same solutions, butB
has duplicate rows removed. The order of distinct rows is kept.