QEtaMultiReduction(C, F, AB)ΒΆ
qetamultisamba.spad line 386 [edit on github]
AB: QEtaAlgebraBasisCategory F
QEtaMultiReduction implement the reduction relation as described in an article by Hemmecke, Paule, and Radu.
- estimatedWeightAfterReduction: (List Integer, List Integer, List Integer, Integer, Integer) -> List Record(fquot: Fraction Integer, fcomponent: NonNegativeInteger)
from QEtaMultiReductionCategory(C, F, AB)
- noTrace: F -> Void
from QEtaComputationReductionCategory(F, AB)
- noTraceEnter: (F, AB) -> Void
from QEtaComputationReductionCategory(F, AB)
- reduce: (F, AB) -> F
from QEtaComputationReductionCategory(F, AB)
- reducer: (F, AB) -> Union(Record(freducer: F, fcomponent: NonNegativeInteger, fexpo: Integer, fquot: List Fraction Integer, fu: F, fwghtu: List Record(fquot: Fraction Integer, fcomponent: NonNegativeInteger), fwghtv: List Record(fquot: Fraction Integer, fcomponent: NonNegativeInteger)), failed)
from QEtaMultiReductionCategory(C, F, AB)
- reducers3: (F, F, F) -> List Record(freducer: F, fcomponent: NonNegativeInteger, fexpo: Integer, fquot: List Fraction Integer, fu: F, fwghtu: List Record(fquot: Fraction Integer, fcomponent: NonNegativeInteger), fwghtv: List Record(fquot: Fraction Integer, fcomponent: NonNegativeInteger))
from QEtaMultiReductionCategory(C, F, AB)
- topReducible?: (F, F, F) -> Boolean
from QEtaComputationReductionCategory(F, AB)
- tracedReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
from QEtaComputationReductionCategory(F, AB)
- traceEnter: NonNegativeInteger -> (F, AB) -> Void
from QEtaComputationReductionCategory(F, AB)
- traceLoop: NonNegativeInteger -> F -> Void
from QEtaComputationReductionCategory(F, AB)
- traceReturn: NonNegativeInteger -> F -> Void
from QEtaComputationReductionCategory(F, AB)
QEtaComputationReductionCategory(F, AB)
QEtaMultiReductionCategory(C, F, AB)