QEtaPolynomialAlgebra(C, P)ΒΆ
qetapolyalg.spad line 105 [edit on github]
QEtaPolynomialAlgebra(C, P) turns a univariate polynomial algebra P inte a QEtaAlgebra.
- 0: %
- from QEtaAlgebra C 
- 1: %
- from QEtaAlgebra C 
- *: (%, %) -> %
- from QEtaAlgebra C 
- *: (%, C) -> %
- from RightModule C 
- *: (%, Fraction Integer) -> % if C has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if C has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (C, %) -> %
- from QEtaAlgebra C 
- *: (Fraction Integer, %) -> % if C has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from QEtaAlgebra C 
- -: % -> %
- from QEtaAlgebra C 
- -: (%, %) -> %
- from QEtaAlgebra C 
- /: (%, C) -> % if C has Field
- from AbelianMonoidRing(C, NonNegativeInteger) 
- ^: (%, NonNegativeInteger) -> %
- from QEtaAlgebra C 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if C has EntireRing
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- binomThmExpt: (%, %, NonNegativeInteger) -> %
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if C has CharacteristicNonZero or % has CharacteristicNonZero and C has PolynomialFactorizationExplicit
- coefficient: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- coefficient: (%, NonNegativeInteger) -> C
- from FreeModuleCategory(C, NonNegativeInteger) 
- coefficient: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- coefficients: % -> List C
- from FreeModuleCategory(C, NonNegativeInteger) 
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: % -> P
- coerce(x)returns the element- xas a univariate polynomial.
- coerce: C -> %
- from CoercibleFrom C 
- coerce: Fraction Integer -> % if C has Algebra Fraction Integer or C has RetractableTo Fraction Integer
- from CoercibleFrom Fraction Integer 
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: P -> %
- coerce(x)turns a univariate polynomial into this domain. No check is made.
- coerce: SingletonAsOrderedSet -> %
- commutator: (%, %) -> %
- from NonAssociativeRng 
- composite: (%, %) -> Union(%, failed) if C has IntegralDomain
- from UnivariatePolynomialCategory C 
- composite: (Fraction %, %) -> Union(Fraction %, failed) if C has IntegralDomain
- from UnivariatePolynomialCategory C 
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and C has PolynomialFactorizationExplicit
- construct: List Record(k: NonNegativeInteger, c: C) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- constructOrdered: List Record(k: NonNegativeInteger, c: C) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- content: % -> C if C has GcdDomain
- content: (%, SingletonAsOrderedSet) -> % if C has GcdDomain
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- convert: % -> InputForm if C has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> Pattern Float if C has ConvertibleTo Pattern Float and SingletonAsOrderedSet has ConvertibleTo Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if C has ConvertibleTo Pattern Integer and SingletonAsOrderedSet has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- D: % -> %
- from DifferentialRing 
- D: (%, C -> C) -> %
- from DifferentialExtension C 
- D: (%, C -> C, NonNegativeInteger) -> %
- from DifferentialExtension C 
- D: (%, List SingletonAsOrderedSet) -> %
- D: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- D: (%, SingletonAsOrderedSet) -> %
- D: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- D: (%, Symbol) -> % if C has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol
- degree: % -> NonNegativeInteger
- from AbelianMonoidRing(C, NonNegativeInteger) 
- degree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- degree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- differentiate: % -> %
- from DifferentialRing 
- differentiate: (%, C -> C) -> %
- from DifferentialExtension C 
- differentiate: (%, C -> C, %) -> %
- from UnivariatePolynomialCategory C 
- differentiate: (%, C -> C, NonNegativeInteger) -> %
- from DifferentialExtension C 
- differentiate: (%, List SingletonAsOrderedSet) -> %
- differentiate: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if C has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- differentiate: (%, SingletonAsOrderedSet) -> %
- differentiate: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> % if C has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if C has PartialDifferentialRing Symbol
- discriminant: % -> C
- from UnivariatePolynomialCategory C 
- discriminant: (%, SingletonAsOrderedSet) -> %
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- divide: (%, %) -> Record(quotient: %, remainder: %) if C has Field
- from EuclideanDomain 
- divideExponents: (%, NonNegativeInteger) -> Union(%, failed)
- from UnivariatePolynomialCategory C 
- elt: (%, %) -> %
- from Eltable(%, %) 
- elt: (%, C) -> C
- from Eltable(C, C) 
- elt: (%, Fraction %) -> Fraction % if C has IntegralDomain
- elt: (Fraction %, C) -> C if C has Field
- from UnivariatePolynomialCategory C 
- elt: (Fraction %, Fraction %) -> Fraction % if C has IntegralDomain
- from UnivariatePolynomialCategory C 
- euclideanSize: % -> NonNegativeInteger if C has Field
- from EuclideanDomain 
- eval: (%, %, %) -> %
- from InnerEvalable(%, %) 
- eval: (%, Equation %) -> %
- from Evalable % 
- eval: (%, List %, List %) -> %
- from InnerEvalable(%, %) 
- eval: (%, List Equation %) -> %
- from Evalable % 
- eval: (%, List SingletonAsOrderedSet, List %) -> %
- from InnerEvalable(SingletonAsOrderedSet, %) 
- eval: (%, List SingletonAsOrderedSet, List C) -> %
- from InnerEvalable(SingletonAsOrderedSet, C) 
- eval: (%, SingletonAsOrderedSet, %) -> %
- from InnerEvalable(SingletonAsOrderedSet, %) 
- eval: (%, SingletonAsOrderedSet, C) -> %
- from InnerEvalable(SingletonAsOrderedSet, C) 
- expressIdealMember: (List %, %) -> Union(List %, failed) if C has Field
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed) if C has EntireRing
- from EntireRing 
- exquo: (%, C) -> Union(%, failed) if C has EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if C has Field
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if C has Field
- from EuclideanDomain 
- factor: % -> Factored % if C has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if C has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if C has PolynomialFactorizationExplicit
- fmecg: (%, NonNegativeInteger, C, %) -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if C has GcdDomain
- from GcdDomain 
- ground: % -> C
- hash: % -> SingleInteger if C has Hashable
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState if C has Hashable
- from Hashable 
- init: % if C has StepThrough
- from StepThrough 
- integrate: % -> % if C has Algebra Fraction Integer
- from UnivariatePolynomialCategory C 
- isExpt: % -> Union(Record(var: SingletonAsOrderedSet, exponent: NonNegativeInteger), failed)
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- isPlus: % -> Union(List %, failed)
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- isTimes: % -> Union(List %, failed)
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- karatsubaDivide: (%, NonNegativeInteger) -> Record(quotient: %, remainder: %)
- from UnivariatePolynomialCategory C 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if C has GcdDomain
- from LeftOreRing 
- leadingCoefficient: % -> C
- from IndexedProductCategory(C, NonNegativeInteger) 
- leadingMonomial: % -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- leadingTerm: % -> Record(k: NonNegativeInteger, c: C)
- from IndexedProductCategory(C, NonNegativeInteger) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- linearExtend: (NonNegativeInteger -> C, %) -> C
- from FreeModuleCategory(C, NonNegativeInteger) 
- listOfTerms: % -> List Record(k: NonNegativeInteger, c: C)
- mainVariable: % -> Union(SingletonAsOrderedSet, failed)
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- makeSUP: % -> SparseUnivariatePolynomial C
- from UnivariatePolynomialCategory C 
- map: (C -> C, %) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- mapExponents: (NonNegativeInteger -> NonNegativeInteger, %) -> %
- minimumDegree: % -> NonNegativeInteger
- minimumDegree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- minimumDegree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- monicDivide: (%, %) -> Record(quotient: %, remainder: %)
- from UnivariatePolynomialCategory C 
- monicDivide: (%, %, SingletonAsOrderedSet) -> Record(quotient: %, remainder: %)
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- monomial?: % -> Boolean
- from IndexedProductCategory(C, NonNegativeInteger) 
- monomial: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- monomial: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- monomial: (C, NonNegativeInteger) -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- monomials: % -> List %
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- multiEuclidean: (List %, %) -> Union(List %, failed) if C has Field
- from EuclideanDomain 
- multiplyExponents: (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory C 
- multivariate: (SparseUnivariatePolynomial %, SingletonAsOrderedSet) -> %
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- multivariate: (SparseUnivariatePolynomial C, SingletonAsOrderedSet) -> %
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- nextItem: % -> Union(%, failed) if C has StepThrough
- from StepThrough 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: (%, %) -> NonNegativeInteger if C has IntegralDomain
- from UnivariatePolynomialCategory C 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if C has PatternMatchable Float and SingletonAsOrderedSet has PatternMatchable Float
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if C has PatternMatchable Integer and SingletonAsOrderedSet has PatternMatchable Integer
- from PatternMatchable Integer 
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra % 
- pomopo!: (%, C, NonNegativeInteger, %) -> %
- prime?: % -> Boolean if C has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- primitivePart: % -> % if C has GcdDomain
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- primitivePart: (%, SingletonAsOrderedSet) -> % if C has GcdDomain
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- principalIdeal: List % -> Record(coef: List %, generator: %) if C has Field
- from PrincipalIdealDomain 
- pseudoDivide: (%, %) -> Record(coef: C, quotient: %, remainder: %) if C has IntegralDomain
- from UnivariatePolynomialCategory C 
- pseudoQuotient: (%, %) -> % if C has IntegralDomain
- from UnivariatePolynomialCategory C 
- pseudoRemainder: (%, %) -> %
- from UnivariatePolynomialCategory C 
- qetaCoefficient: (%, Integer) -> C
- from QEtaGradedAlgebra C 
- qetaGrade: % -> Integer
- from QEtaGradedAlgebra C 
- qetaLeadingCoefficient: % -> C
- from QEtaGradedAlgebra C 
- quo: (%, %) -> % if C has Field
- from EuclideanDomain 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix C, vec: Vector C)
- from LinearlyExplicitOver C 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if C has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix C
- from LinearlyExplicitOver C 
- reducedSystem: Matrix % -> Matrix Integer if C has LinearlyExplicitOver Integer
- reductum: % -> %
- from IndexedProductCategory(C, NonNegativeInteger) 
- rem: (%, %) -> % if C has Field
- from EuclideanDomain 
- resultant: (%, %) -> C
- from UnivariatePolynomialCategory C 
- resultant: (%, %, SingletonAsOrderedSet) -> %
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- retract: % -> C
- from RetractableTo C 
- retract: % -> Fraction Integer if C has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer if C has RetractableTo Integer
- from RetractableTo Integer 
- retract: % -> SingletonAsOrderedSet
- retractIfCan: % -> Union(C, failed)
- from RetractableTo C 
- retractIfCan: % -> Union(Fraction Integer, failed) if C has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed) if C has RetractableTo Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(SingletonAsOrderedSet, failed)
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from MagmaWithUnit 
- separate: (%, %) -> Record(primePart: %, commonPart: %) if C has GcdDomain
- from UnivariatePolynomialCategory C 
- shiftLeft: (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory C 
- shiftRight: (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory C 
- sizeLess?: (%, %) -> Boolean if C has Field
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean if C has Comparable
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if C has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if C has GcdDomain
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- squareFreePart: % -> % if C has GcdDomain
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if C has PolynomialFactorizationExplicit
- subResultantGcd: (%, %) -> % if C has IntegralDomain
- from UnivariatePolynomialCategory C 
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List NonNegativeInteger
- from FreeModuleCategory(C, NonNegativeInteger) 
- totalDegree: % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- totalDegree: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- totalDegreeSorted: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- traceout: NonNegativeInteger -> % -> OutputForm
- from QEtaAlgebra C 
- unit?: % -> Boolean if C has EntireRing
- from EntireRing 
- unitCanonical: % -> % if C has EntireRing
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if C has EntireRing
- from EntireRing 
- univariate: % -> SparseUnivariatePolynomial C
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- univariate: (%, SingletonAsOrderedSet) -> SparseUnivariatePolynomial %
- from PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- unmakeSUP: SparseUnivariatePolynomial C -> %
- from UnivariatePolynomialCategory C 
- unvectorise: Vector C -> %
- from UnivariatePolynomialCategory C 
- variables: % -> List SingletonAsOrderedSet
- from MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet) 
- vectorise: (%, NonNegativeInteger) -> Vector C
- from UnivariatePolynomialCategory C 
- zero?: % -> Boolean
- from QEtaAlgebra C 
AbelianMonoidRing(C, NonNegativeInteger)
additiveValuation if C has Field
Algebra %
Algebra C
Algebra Fraction Integer if C has Algebra Fraction Integer
BiModule(%, %)
BiModule(C, C)
BiModule(Fraction Integer, Fraction Integer) if C has Algebra Fraction Integer
canonicalUnitNormal if C has canonicalUnitNormal
CharacteristicNonZero if C has CharacteristicNonZero
CharacteristicZero if C has CharacteristicZero
CoercibleFrom Fraction Integer if C has RetractableTo Fraction Integer
CoercibleFrom Integer if C has RetractableTo Integer
CoercibleFrom SingletonAsOrderedSet
Comparable if C has Comparable
ConvertibleTo InputForm if C has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
ConvertibleTo Pattern Float if C has ConvertibleTo Pattern Float and SingletonAsOrderedSet has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if C has ConvertibleTo Pattern Integer and SingletonAsOrderedSet has ConvertibleTo Pattern Integer
Eltable(%, %)
Eltable(C, C)
Eltable(Fraction %, Fraction %) if C has IntegralDomain
EntireRing if C has EntireRing
EuclideanDomain if C has Field
Evalable %
FiniteAbelianMonoidRing(C, NonNegativeInteger)
FreeModuleCategory(C, NonNegativeInteger)
IndexedDirectProductCategory(C, NonNegativeInteger)
IndexedProductCategory(C, NonNegativeInteger)
InnerEvalable(%, %)
InnerEvalable(SingletonAsOrderedSet, %)
InnerEvalable(SingletonAsOrderedSet, C)
IntegralDomain if C has IntegralDomain
LeftModule Fraction Integer if C has Algebra Fraction Integer
LeftOreRing if C has GcdDomain
LinearlyExplicitOver Integer if C has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
Module %
Module C
Module Fraction Integer if C has Algebra Fraction Integer
NonAssociativeAlgebra Fraction Integer if C has Algebra Fraction Integer
noZeroDivisors if C has EntireRing
PartialDifferentialRing SingletonAsOrderedSet
PartialDifferentialRing Symbol if C has PartialDifferentialRing Symbol
PatternMatchable Float if C has PatternMatchable Float and SingletonAsOrderedSet has PatternMatchable Float
PatternMatchable Integer if C has PatternMatchable Integer and SingletonAsOrderedSet has PatternMatchable Integer
PolynomialCategory(C, NonNegativeInteger, SingletonAsOrderedSet)
PolynomialFactorizationExplicit if C has PolynomialFactorizationExplicit
PrincipalIdealDomain if C has Field
RetractableTo Fraction Integer if C has RetractableTo Fraction Integer
RetractableTo Integer if C has RetractableTo Integer
RetractableTo SingletonAsOrderedSet
RightModule Fraction Integer if C has Algebra Fraction Integer
RightModule Integer if C has LinearlyExplicitOver Integer
StepThrough if C has StepThrough
UniqueFactorizationDomain if C has PolynomialFactorizationExplicit