QEtaPowerAlgebraBasis FΒΆ

qetapowersamba.spad line 433 [edit on github]

QEtaPowerAlgebraBasis(C, F) is a domain holding the special structure of an algebra basis with elements that can be used during a reduction in arbitrary positive power (the multipliers), the linear basis elements and an order on the component given by an index permutation idx if i<j then component idx.i should be counted as smaller than component idx.j.

basisElements: % -> Vector XHashTable(Integer, List F)

from QEtaPowerAlgebraBasisCategory F

coerce: % -> OutputForm

from CoercibleTo OutputForm

component: (F, XHashTable(PositiveInteger, PositiveInteger)) -> Integer

from QEtaPowerAlgebraBasisCategory F

indexPermutation: % -> XHashTable(PositiveInteger, PositiveInteger)

from QEtaPowerAlgebraBasisCategory F

initialize: List F -> %

from QEtaPowerAlgebraBasisCategory F

multipliers: % -> XHashTable(PositiveInteger, F)

from QEtaPowerAlgebraBasisCategory F

CoercibleTo OutputForm

QEtaPowerAlgebraBasisCategory F