QEtaPowerPolynomialAlgebra(C, P, n)ΒΆ
qetapolyalg.spad line 138 [edit on github]
- P: QEtaGradedAlgebra C 
QEtaPowerPolynomialAlgebra(C, L, cusps) represents the algebra of eta-quotients that are modular functions for a certain Gamma_0(m) and have only poles at the given cusps.
- 0: %
- from QEtaAlgebra C 
- 1: %
- from QEtaAlgebra C 
- *: (%, %) -> %
- from QEtaAlgebra C 
- *: (C, %) -> %
- from QEtaAlgebra C 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from QEtaAlgebra C 
- -: % -> %
- from QEtaAlgebra C 
- -: (%, %) -> %
- from QEtaAlgebra C 
- /: (%, %) -> % if C has Field
- from QEtaPowerGradedAlgebra C 
- ^: (%, NonNegativeInteger) -> %
- from QEtaAlgebra C 
- ^: (%, PositiveInteger) -> %
- from Magma 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Vector P -> %
- If #v=n, then coerce( - v) turns- vinto an element of this domain. Otherwise an error is returned.
- latex: % -> String
- from SetCategory 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- maxIndex: () -> PositiveInteger
- from QEtaPowerGradedAlgebra C 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- qetaGrade: (%, PositiveInteger) -> Integer
- from QEtaPowerGradedAlgebra C 
- qetaGrade: (%, PositiveInteger, Integer) -> Integer
- from QEtaPowerGradedAlgebra C 
- qetaGrades: % -> List Integer
- from QEtaPowerGradedAlgebra C 
- qetaIndex: % -> PositiveInteger
- from QEtaPowerGradedAlgebra C 
- qetaLeadingCoefficient: (%, PositiveInteger) -> C
- from QEtaPowerGradedAlgebra C 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from MagmaWithUnit 
- subtractIfCan: (%, %) -> Union(%, failed)
- traceout: NonNegativeInteger -> % -> OutputForm
- from QEtaAlgebra C 
- zero?: % -> Boolean
- from QEtaAlgebra C