QEtaPowerPolynomialAlgebra(C, P, n)ΒΆ
qetapolyalg.spad line 138 [edit on github]
P: QEtaGradedAlgebra C
QEtaPowerPolynomialAlgebra(C
, L
, cusps) represents the algebra of eta-quotients that are modular functions for a certain Gamma_0
(m
) and have only poles at the given cusps.
- 0: %
from QEtaAlgebra C
- 1: %
from QEtaAlgebra C
- *: (%, %) -> %
from QEtaAlgebra C
- *: (C, %) -> %
from QEtaAlgebra C
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from QEtaAlgebra C
- -: % -> %
from QEtaAlgebra C
- -: (%, %) -> %
from QEtaAlgebra C
- /: (%, %) -> % if C has Field
from QEtaPowerGradedAlgebra C
- ^: (%, NonNegativeInteger) -> %
from QEtaAlgebra C
- ^: (%, PositiveInteger) -> %
from Magma
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Vector P -> %
If #v=n, then coerce(
v
) turnsv
into an element of this domain. Otherwise an error is returned.
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- maxIndex: () -> PositiveInteger
from QEtaPowerGradedAlgebra C
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- qetaGrade: (%, PositiveInteger) -> Integer
from QEtaPowerGradedAlgebra C
- qetaGrade: (%, PositiveInteger, Integer) -> Integer
from QEtaPowerGradedAlgebra C
- qetaGrades: % -> List Integer
from QEtaPowerGradedAlgebra C
- qetaIndex: % -> PositiveInteger
from QEtaPowerGradedAlgebra C
- qetaLeadingCoefficient: (%, PositiveInteger) -> C
from QEtaPowerGradedAlgebra C
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit
- subtractIfCan: (%, %) -> Union(%, failed)
- traceout: NonNegativeInteger -> % -> OutputForm
from QEtaAlgebra C
- zero?: % -> Boolean
from QEtaAlgebra C