QEtaQuotientMonoidExponentVectorsΒΆ
QEtaQuotientMonoidExponentVectors helps to do computations with eta functions and quotients of eta functions expressed in terms of the q-series. An alternative version can be found as QEtaQuotientMonoidExponentVectors4ti2.
- etaQuotientMonoidExponentVectors: PositiveInteger -> List List Integer
etaQuotientMonoidExponentVectors(m)returnsZ-vectors $r$ (of dimensionn+1, where #(divisorsm)=n+1) that correspond to the formula (16) from cite{Radu:RamanujanKolberg:2015}, i.e. (together with the zero vector) they describe the monoid E^infty(m) and theN-moduleR^infty(N), respectively.