qetaqmev.spad line 461

QEtaQuotientMonoidExponentVectors4ti2 helps to do computations with eta functions and quotients of eta functions expressed in terms of the q-series. An alternative version can be found as QEtaQuotientMonoidExponentVectors.

etaQuotientMonoidExponentVectors: (PositiveInteger , List Integer ) -> List List Integer
etaQuotientMonoidExponentVectors(m, idiv) computes the rStarNonNegativeMatrix(m)$QAuxiliaryModularEtaQuotientPackage and finds a basis of the solution space.
etaQuotientMonoidExponentVectors: PositiveInteger -> List List Integer
etaQuotientMonoidExponentVectors(m) returns Z-vectors $r$ (of dimension n, where n=\#(divisors m)) that correspond to the formula (16) from cite{Radu:RamanujanKolberg:2015}, i.e. (together with the zero vector) they describe the monoid E^infty(m). Same as etaQuotientsMonoidExponentVectors(m, [1..n-1]) where n is the number of divisors of n.