QEtaRepresentationΒΆ
qetarep.spad line 94 [edit on github]
QEtaRepresentation implements functions to represent a $q
$-series as a (generalized) eta-quotient.
- etaQuotientSpecification: (List List Integer, QEtaLaurentSeries Integer, PositiveInteger) -> Record(fspec: QEtaSpecification, fexp: Fraction Integer, fser: QEtaLaurentSeries Integer)
etaSpecification(idxs,
s
,n
) assumes that s=q^a*t andt
is a Taylor series with constant term 1 and returns [spec,e
,r
], i.e. an eta-quotient specification together with a seriesr
such that if u=etaQuotientInfintiy(spec), thent
and eulerExpansion(u
) have the same coefficients up to the coefficient ofq^n
, a=e+eulerExponent(u
), and t=r*eulerExpansion(u
). The specification will contain only indices from idxs. The function basically fails if order(eulerExpansion(r
),n
)<n
.
- etaQuotientSpecification: (PositiveInteger, QEtaLaurentSeries Integer, PositiveInteger) -> Record(fspec: QEtaSpecification, fexp: Fraction Integer, fser: QEtaLaurentSeries Integer)
etaSpecification(
nn
,s
,n
) assumes that s=q^a*t andt
is a Taylor series with constant term 1 and returns [spec,e
,r
], i.e. an eta-quotient specification together with a seriesr
such that if u=etaQuotientInfintiy(spec), thent
and eulerExpansion(u
) have the same coefficients up to the coefficient ofq^n
, a=e+eulerExponent(u
), and t=r*eulerExpansion(u
). The specification may contain generalized eta-quotients and will be of levelnn
. In fact, it is equivalent to etaQuotientSpecification(idxs,s
,n
) for idxs:=concat(eidxs,pidxs) where pidxs=[[nn
,g
] forg
in 1..floor((nn
-1)/2
)] and eidx=[nn/2
,nn
] ifnn
is even and eidxs=[nn
] for oddnn
. The function basically fails if order(eulerExpansion(r
),n
)<n
.
- etaQuotientSpecification: (QEtaLaurentSeries Integer, PositiveInteger) -> Record(fspec: QEtaSpecification, fexp: Fraction Integer, fser: QEtaLaurentSeries Integer)
etaSpecification(
s
,n
) assumes that s=q^a*t andt
is a Taylor series with constant term 1 and returns [spec,e
,r
], i.e. an eta-quotient specification together with a seriesr
such that if u=etaQuotientInfintiy(spec), thent
and eulerExpansion(u
) have the same coefficients up to the coefficient ofq^n
, a=e+eulerExponent(u
), and t=r*eulerExpansion(u
). Only pure eta-quotients are returned. In fact, the call etaSpecification(s
,n
) is equivalent to etaSpecification(idxs,s
,n
) for idxs=[[d
] ford
in 1..n
]. The function basically fails if order(eulerExpansion(r
),n
)<n
.