QEtaReduction(C, F, AB)¶
qetasamba.spad line 474 [edit on github]
F: QEtaGradedAlgebra C
AB: QEtaAlgebraBasisCategory(C, F)
QEtaReduction implements the restricted reduction as described in “Dancing Samba with Ramanujan Partition Congruences” (Journal of Symbolic Computation). doi:10
.1016/j.jsc
.2017.02.001 http://www.risc.jku.at/publications/download/risc_5338/DancingSambaRamanujan.pdf
Note that here we not only reduce the top term, but also the remaining terms up to (and including) qetaGrade = 0.
- greaterGrade?: (F, F) -> Boolean
from QEtaReductionCategory(C, F, AB)
- noTrace: F -> Void
from QEtaReductionCategory(C, F, AB)
- noTraceEnter: (F, AB) -> Void
from QEtaReductionCategory(C, F, AB)
- reduce: (F, AB) -> F
from QEtaReductionCategory(C, F, AB)
- reducer: (F, AB) -> Union(F, failed)
from QEtaReductionCategory(C, F, AB)
- tailReduce: (F, AB) -> F
from QEtaReductionCategory(C, F, AB)
- tailReducible?: (F, Integer, F) -> Boolean
from QEtaReductionCategory(C, F, AB)
- topReduce: (F, AB) -> F
from QEtaReductionCategory(C, F, AB)
- topReducible?: (F, F) -> Boolean
from QEtaReductionCategory(C, F, AB)
- tracedReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
from QEtaReductionCategory(C, F, AB)
- tracedTailReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
from QEtaReductionCategory(C, F, AB)
- tracedTopReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
from QEtaReductionCategory(C, F, AB)
- traceEnter: NonNegativeInteger -> (F, AB) -> Void
from QEtaReductionCategory(C, F, AB)
- traceLoop: NonNegativeInteger -> F -> Void
from QEtaReductionCategory(C, F, AB)
- traceReturn: NonNegativeInteger -> F -> Void
from QEtaReductionCategory(C, F, AB)
QEtaReductionCategory(C, F, AB)