QEtaReduction(C, F, AB)

qetasamba.spad line 458 [edit on github]

QEtaReduction implements the restricted reduction as described in “Dancing Samba with Ramanujan Partition Congruences” (Journal of Symbolic Computation). doi:10.1016/j.jsc.2017.02.001 http://www.risc.jku.at/publications/download/risc_5338/DancingSambaRamanujan.pdf Note that here we not only reduce the top term, but also the remaining terms up to (and including) qetaGrade = 0.

greaterGrade?: (F, F) -> Boolean

from QEtaReductionCategory(C, F, AB)

noTrace: F -> Void

from QEtaReductionCategory(C, F, AB)

noTraceEnter: (F, AB) -> Void

from QEtaReductionCategory(C, F, AB)

reduce: (F, AB) -> F

from QEtaReductionCategory(C, F, AB)

reducer: (F, AB) -> Union(F, failed)

from QEtaReductionCategory(C, F, AB)

tailReduce: (F, AB) -> F

from QEtaReductionCategory(C, F, AB)

tailReducible?: (F, Integer, F) -> Boolean

from QEtaReductionCategory(C, F, AB)

topReduce: (F, AB) -> F

from QEtaReductionCategory(C, F, AB)

topReducible?: (F, F) -> Boolean

from QEtaReductionCategory(C, F, AB)

tracedReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F

from QEtaReductionCategory(C, F, AB)

tracedTailReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F

from QEtaReductionCategory(C, F, AB)

tracedTopReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F

from QEtaReductionCategory(C, F, AB)

traceEnter: NonNegativeInteger -> (F, AB) -> Void

from QEtaReductionCategory(C, F, AB)

traceLoop: NonNegativeInteger -> F -> Void

from QEtaReductionCategory(C, F, AB)

traceReturn: NonNegativeInteger -> F -> Void

from QEtaReductionCategory(C, F, AB)

QEtaReductionCategory(C, F, AB)