QEtaRamanujanKolberg(C, QMOD)ΒΆ
qetark.spad line 722 [edit on github]
QMOD: QEtaModularCategory
QEtaRamanujanKolberg provides functions to compute Ramanujan-Kolberg identities by an algorithm that was developed by Radu in cite{Radu_RamanujanKolberg_2015
} (`DOI=10
.1016/j.jsc
.2014.09.018 <https://doi.org/10
.1016/j.jsc
.2014.09.018>`_), see RISC Report 16-06 <https://www.risc.jku.``at/publications/download/risc_5069/zzz3`.pdf>`_. See also at the top of the qetark.spad file where this package is implemented. This package builds on the work of cite{ChenDuZhao_FindingModularFunctionsRamanujan_2019
} and finds identities with generalized eta-quotients.
- findIdentity: (PositiveInteger, List List Integer, QEtaSpecification, PositiveInteger, NonNegativeInteger, List List Integer) -> QEtaRamanujanKolbergIdentity C
findIdentity(nn, sidxs, rspec, m, k, bidxs)
returns all data for a Ramanujan-Kolberg identity where the indices for the cofactor and the generalized eta-quotients on the right-hand side are given bysidxs
and bidxs, respectively.
- findIdentity: (PositiveInteger, List List Integer, QEtaSpecification, PositiveInteger, NonNegativeInteger, List QEtaSpecification) -> QEtaRamanujanKolbergIdentity C
findIdentity(nn, idxs, rspec, m, k, mgens)
returns all data for a Ramanujan-Kolberg identity where the cofactor may only involve generalized eta-functions given through the indicesidxs
. Note that elements from mspecs that specify constant generalized eta-quotients will be removed.
- findIdentity: (PositiveInteger, List List Integer, QEtaSpecification, PositiveInteger, NonNegativeInteger, QEtaRamanujanKolbergIdentity C) -> QEtaRamanujanKolbergIdentity C
findIdentity(nn, sidxs, rspec, m, k, id)
returns all data for a Ramanujan-Kolberg identity. The basis elements are taken from a previously computed identity, if possible.
- findIdentity: (PositiveInteger, QEtaSpecification, PositiveInteger, NonNegativeInteger, List List Integer) -> QEtaRamanujanKolbergIdentity C
findIdentity(nn,rspec,m,k,idxs)
returns findIdentity(nn
,idxs
,rspec
,m
,k
,idxs
)
- findIdentity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List List Integer) -> QEtaRamanujanKolbergIdentity C
findIdentity(sspec, rspec, m, k, idxs)
returns all data for a Ramanujan-Kolberg identity where the right-hand side may only involve generalized eta-quotients that are given through the indices idxs.
- findIdentity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List QEtaSpecification) -> QEtaRamanujanKolbergIdentity C
findIdentity(sspec, rspec, m, k, mspecs)
returns all data for a Ramanujan-Kolberg identity. Note that elements from mspecs that specify constant generalized eta-quotients will be removed.
- findIdentity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, List QEtaSpecification, QEtaAlgebraBasis(C, QEtaExtendedAlgebra(C, QEtaAlgebraCachedPower(C, Finite0Series C), QEtaAlgebraCachedPower(C, Polynomial C)))) -> QEtaRamanujanKolbergIdentity C
findIdentity(sspec, rspec, m, k, mspecs, xab)
returns all data for a Ramanujan-Kolberg identity. It is assumed thatmspecs
describe theMi
variables in xab in the same order.
- findIdentity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger, QEtaRamanujanKolbergIdentity C) -> QEtaRamanujanKolbergIdentity C
findIdentity(sspec, rspec, m, k, id)
returns all data for a Ramanujan-Kolberg identity. The basis elements are taken from a previously computed identity, if possible.