ModularEtaQuotient(C, mx, CX, xi, LX)ΒΆ
- C: Join(Algebra Fraction Integer , IntegralDomain )
- mx: PositiveInteger
- CX: Algebra C
- xi: CX
- LX: UnivariateLaurentSeriesCategory CX
ModularEtaQuotient(C, mx, CX, xi, LX) represents the set of eta-quotients that are modular functions for Gamma_0(N). In fact, this domain is meant to do computation for a specific N, but is actually implementing the union over all N.
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- etaQuotient: (PositiveInteger , List Integer ) -> %
etaQuotient(m, r)represents the expansion ofg_r(tau) in terms ofx= exp(2 piitau/w) where w=width(m,c) at all cusps ofGamma0(m). See eqref{eq:g_r(tau)}.
- etaQuotient: SymbolicEtaQuotient -> %
etaQuotient(y)represents the expansion ofg_r(tau) in terms ofx= exp(2 piitau/w) where w=width(m,c) at all cusps ofGamma0(levely). See eqref{eq:g_r(tau)}.
- expansions: % -> XHashTable (Fraction Integer , LX)
expansions(x)returns the Laurent series expansions of $g_r(tau)$ at all cusps ofGamma_0(levelx) corresponding to cusps(symbolicEtaQuotientx).- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- level: % -> PositiveInteger
level(x)returnsmsuch thatxcorresponds to a modular function forGamma_0(m).
- symbolicEtaQuotient: % -> SymbolicEtaQuotient
symbolicEtaQuotient(x)returns the meta data corresponding tox. If x=etaQuotient(y) then symbolicEtaQuotient(x)=y.