SymbolicEtaQuotient¶
qetaquotsymb.spad line 976 [edit on github]
SymbolicEtaQuotient holds data to compute an eta-quotient expansions of g_r(tau) at all cusps of $Gamma_0(N)$ or at the given cusps. See eqref{g_r(tau)}
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- elt: (%, Cusp) -> SymbolicEtaQuotientGamma
x.cusp returns the data corresponding to the respective cusp.
- etaQuotient: (PositiveInteger, List Integer) -> %
etaQuotient(mm, r)represents the expansion ofg_r(tau) at all cusps a/c ofGamma0(mm) in terms ofx= exp(2 piitau/w) where w=width(m,c) and gamma=cuspToMatrix(mm, a/c). It is the same as etaQuotient(mm,r, cusps(mm)$CongruenceSubgroupGamma0). $r$ is indexed by the divisors of $mm$. See eqref{eq:g_r(tau)}.
- etaQuotient: (PositiveInteger, List Integer, List Cusp) -> %
etaQuotient(mm, r, cusps)represents the expansion ofg_r(tau) at the given cusps a/c ofGamma0(mm) in terms ofx= exp(2 piitau/w) where w=width(m,c) and gamma=cuspToMatrix(m, a/c). $r$ is indexed by the divisors of $mm$. See eqref{eq:g_r(tau)}.
- etaQuotient: (QEtaSpecification, List Cusp) -> %
etaQuotient(rspec, cusps)represents the expansion ofg_r(tau) at the given cusps a/c ofGamma0(mm) in terms ofx= exp(2 piitau/w) where w=width(m,c) and gamma=cuspToMatrix(m, a/c). $r$ and $mm$ are given byrspec. See eqref{eq:g_r(tau)}.
- etaQuotient: QEtaSpecification -> %
etaQuotient(rspec)represents the expansion ofg_r(tau) at all cusps a/c ofGamma0(mm) in terms ofx= exp(2 piitau/w) where w=width(m,c) and gamma=cuspToMatrix(mm, a/c). It is the same as etaQuotient(rspec, cusps(mm)$CongruenceSubgroupGamma0). $r$ and $mm$ are given byrspec. See eqref{eq:g_r(tau)}.
- exponents: % -> List Integer
If x=etaQuotient(
m,r) then exponents(x) returns the list of exponents, i.e. exponents(x)=r.
- hash: % -> SingleInteger
from SetCategory
- hashUpdate!: (HashState, %) -> HashState
from SetCategory
- latex: % -> String
from SetCategory
- level: % -> PositiveInteger
If x=etaQuotient(
mm,r) then level(x) returns the level of the eta-quotient, i.e. level(x)=mm.
- minimalRootOfUnity: % -> PositiveInteger
If x=etaQuotient(
mm,r), then minimalRootOfUnity(x) returns the smallest positive integernsuch that the expansion of the functiong_r(tau) at any cusp ofGamma_0(mm) (neglecting the (ctau+d)^*factor lives inQ[w][[x]] wherewis ann-th root of unity.
- one?: % -> Boolean
one?(x)returnstrueif the eta-quotient corresponding toxrepresents 1.
- qetaGrades: % -> List Integer
qetaGrades(x)returns the (negated) exponents of a series expansion ofxat all the cusps in the canonical variables, i.e. in x=q^(1/w) where w=width(levelx, denom cusp)$GAMMA0Internally, the matrix of Ligozat is employed.
- specification: % -> QEtaSpecification
If x=etaQuotient(spec,…), then specification(
x) returns spec.