QEtaClassicalModularPolynomial¶
qetatool.spad line 609 [edit on github]
undocumented
- classicalModularPolynomial: (PositiveInteger, String) -> Polynomial Integer
- classicalModularPolynomial(n, dir)returns classicalModularPolynomial(- n,”x”::Symbol,”y”::Symbol, dir).
- classicalModularPolynomial: (PositiveInteger, Symbol, Symbol) -> Polynomial Integer
- classicalModularPolynomial(n,x,y)returns classicalModularPolynomial(- n,- x,- y,”.”).
- classicalModularPolynomial: (PositiveInteger, Symbol, Symbol, String) -> Polynomial Integer
- classicalModularPolynomial(n,x,y,dir)returns a polynomial- p(- x,- y) such that- p(- j(tau),- j(n*tau))- =0where- jis the Klein- jinvariant. It loads the data from the file “phin.txt” in the directory given by- dir. If the file is not yet there it downloads it from the web using downloadClassicalModularPolynomial(- n,- dir) and then converts it to a polynomial in the variables- xand- y.
- classicalModularPolynomial: PositiveInteger -> Polynomial Integer
- classicalModularPolynomial(n)returns classicalModularPolynomial(- n,”x”::Symbol,”y”::Symbol).
- downloadClassicalModularPolynomial: (PositiveInteger, FileName) -> Void
- downloadClassicalModularPolynomial(n, fn)downloads the file for the- n-th classical modular polynomial from https://math.mit.edu/~drew/ClassicalModPolys.html and stores it under the name given by- fn. As a download tool “curl” is used.