QEtaClassicalModularPolynomial¶
qetatool.spad line 609 [edit on github]
undocumented
- classicalModularPolynomial: (PositiveInteger, String) -> Polynomial Integer
classicalModularPolynomial(n, dir)
returns classicalModularPolynomial(n
,”x”::Symbol,”y”::Symbol, dir).
- classicalModularPolynomial: (PositiveInteger, Symbol, Symbol) -> Polynomial Integer
classicalModularPolynomial(n,x,y)
returns classicalModularPolynomial(n
,x
,y
,”.”).
- classicalModularPolynomial: (PositiveInteger, Symbol, Symbol, String) -> Polynomial Integer
classicalModularPolynomial(n,x,y,dir)
returns a polynomialp
(x
,y
) such thatp
(j
(tau),j
(n*tau))=0
wherej
is the Kleinj
invariant. It loads the data from the file “phin.txt” in the directory given bydir
. If the file is not yet there it downloads it from the web using downloadClassicalModularPolynomial(n
,dir
) and then converts it to a polynomial in the variablesx
andy
.
- classicalModularPolynomial: PositiveInteger -> Polynomial Integer
classicalModularPolynomial(n)
returns classicalModularPolynomial(n
,”x”::Symbol,”y”::Symbol).
- downloadClassicalModularPolynomial: (PositiveInteger, FileName) -> Void
downloadClassicalModularPolynomial(n, fn)
downloads the file for then
-th classical modular polynomial from https://math.mit.edu/~drew/ClassicalModPolys.html and stores it under the name given byfn
. As a download tool “curl” is used.