QEtaClassicalModularPolynomial¶
qetatool.spad line 609 [edit on github]
undocumented
- classicalModularPolynomial: (PositiveInteger, String) -> Polynomial Integer
classicalModularPolynomial(n, dir)returns classicalModularPolynomial(n,”x”::Symbol,”y”::Symbol, dir).
- classicalModularPolynomial: (PositiveInteger, Symbol, Symbol) -> Polynomial Integer
classicalModularPolynomial(n,x,y)returns classicalModularPolynomial(n,x,y,”.”).
- classicalModularPolynomial: (PositiveInteger, Symbol, Symbol, String) -> Polynomial Integer
classicalModularPolynomial(n,x,y,dir)returns a polynomialp(x,y) such thatp(j(tau),j(n*tau))=0wherejis the Kleinjinvariant. It loads the data from the file “phin.txt” in the directory given bydir. If the file is not yet there it downloads it from the web using downloadClassicalModularPolynomial(n,dir) and then converts it to a polynomial in the variablesxandy.
- classicalModularPolynomial: PositiveInteger -> Polynomial Integer
classicalModularPolynomial(n)returns classicalModularPolynomial(n,”x”::Symbol,”y”::Symbol).
- downloadClassicalModularPolynomial: (PositiveInteger, FileName) -> Void
downloadClassicalModularPolynomial(n, fn)downloads the file for then-th classical modular polynomial from https://math.mit.edu/~drew/ClassicalModPolys.html and stores it under the name given byfn. As a download tool “curl” is used.