QEtaComputationDelayedPairs(C, F, AB, R)¶
qetasamba.spad line 1030 [edit on github]
F: QEtaGradedAlgebra C
AB: QEtaAlgebraBasisCategory(C, F) with
basisElements: % -> XHashTable(Integer, List F)
initialize: F -> %
R: QEtaReductionCategory(C, F, AB)
QEtaComputationDelayedPairs implements a variant of the algorithm Samba from an article of Ralf Hemmecke: “Dancing Samba with Ramanujan Partition Congruences” (Journal of Symbolic Computation). doi:10
.1016/j.jsc
.2017.02.001 http://www.risc.jku.at/publications/download/risc_5338/DancingSambaRamanujan.pdf
In this variant, products of basis elements are computed if no other critical elements are available.
- algebraBasis: % -> AB
from QEtaComputationCategory(F, AB)
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- criticalElements?: % -> Boolean
from QEtaComputationCategory(F, AB)
- extractNext!: % -> F
from QEtaComputationCategory(F, AB)
- initialize: List F -> %
from QEtaComputationCategory(F, AB)
- noTrace: % -> Void
from QEtaComputationCategory(F, AB)
- oneStep!: % -> %
from QEtaComputationCategory(F, AB)
- oneStepComputation!: (%, % -> F) -> %
from QEtaComputationCategory(F, AB)
- oneTracedStep!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> % -> %
from QEtaComputationCategory(F, AB)
- oneTracedStepComputation!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> (%, % -> F) -> %
from QEtaComputationCategory(F, AB)
- oneVerboseStep!: (NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> % -> %
oneVerboseStep!(ny, n0, nl, nr)
is equivalent with oneTracedStep!(traceny
, traceEnter(n0
)$R
, traceLoop(nl
)$R
, traceReturn(nr
)$R
).
- postProcess!: % -> %
from QEtaComputationCategory(F, AB)
- trace: NonNegativeInteger -> % -> Void
from QEtaComputationCategory(F, AB)
QEtaComputationCategory(F, AB)