QEtaComputationNoPairs(C, F, AB, R)¶
qetasamba.spad line 1149 [edit on github]
- F: QEtaGradedAlgebra C 
- AB: QEtaAlgebraBasisCategory F with - basisElements: % -> XHashTable(Integer, List F) 
- R: QEtaComputationReductionCategory(F, AB) 
QEtaComputationNoPairs implements a variant of the algorithm Samba from an article of Ralf Hemmecke: “Dancing Samba with Ramanujan Partition Congruences” (Journal of Symbolic Computation). doi:10.1016/j.jsc.2017.02.001 http://www.risc.jku.at/publications/download/risc_5338/DancingSambaRamanujan.pdf In this variant, products of basis elements are never computed.
- algebraBasis: % -> AB
- from QEtaComputationCategory(F, AB) 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- continue?: % -> Boolean
- from QEtaComputationCategory(F, AB) 
- criticalElements?: % -> Boolean
- from QEtaComputationCategory(F, AB) 
- extractNext!: % -> F
- from QEtaComputationCategory(F, AB) 
- initialize: (List F, Integer) -> %
- from QEtaComputationCategory(F, AB) 
- initialize: List F -> %
- from QEtaComputationCategory(F, AB) 
- noTrace: % -> Void
- from QEtaComputationCategory(F, AB) 
- oneStep!: % -> %
- from QEtaComputationCategory(F, AB) 
- oneStepComputation!: (%, % -> F) -> %
- from QEtaComputationCategory(F, AB) 
- oneTracedStep!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> % -> %
- from QEtaComputationCategory(F, AB) 
- oneTracedStepComputation!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> (%, % -> F) -> %
- from QEtaComputationCategory(F, AB) 
- oneVerboseStep!: (NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> % -> %
- oneVerboseStep!(ny, n0, nl, nr)is equivalent with oneTracedStep!(trace- ny, traceEnter(- n0)$- R, traceLoop(- nl)$- R, traceReturn(- nr)$- R).
- postProcess!: % -> %
- from QEtaComputationCategory(F, AB) 
- trace: NonNegativeInteger -> % -> Void
- from QEtaComputationCategory(F, AB) 
QEtaComputationCategory(F, AB)