QEtaComputationModularEquation(C, F, AB, R)ΒΆ
qetasamba.spad line 1307 [edit on github]
- F: QEtaGradedAlgebra C 
- AB: QEtaAlgebraBasisCategory F with - basisElements: % -> XHashTable(Integer, List F) 
- R: QEtaComputationReductionCategory(F, AB) 
QEtaComputationModularEquation is a variant of QEtaComputation in order to compute a modular equation between two elements.
- algebraBasis: % -> AB
- from QEtaComputationCategory(F, AB) 
- basis: % -> List F
- basis xreturns basis(algebraBasis- x).
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- continue?: % -> Boolean
- from QEtaComputationCategory(F, AB) 
- criticalElements?: % -> Boolean
- from QEtaComputationCategory(F, AB) 
- extractNext!: % -> F
- from QEtaComputationCategory(F, AB) 
- initialize: (List F, Integer) -> %
- from QEtaComputationCategory(F, AB) 
- initialize: List F -> %
- from QEtaComputationCategory(F, AB) 
- noTrace: % -> Void
- from QEtaComputationCategory(F, AB) 
- oneStep!: % -> %
- from QEtaComputationCategory(F, AB) 
- oneStepComputation!: (%, % -> F) -> %
- from QEtaComputationCategory(F, AB) 
- oneTracedStep!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> % -> %
- from QEtaComputationCategory(F, AB) 
- oneTracedStepComputation!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> (%, % -> F) -> %
- from QEtaComputationCategory(F, AB) 
- oneVerboseStep!: (NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> % -> %
- oneVerboseStep!(ny, n0, nl, nr)is equivalent with oneTracedStep!(trace- ny, traceEnter(- n0)$- R, traceLoop(- nl)$- R, traceReturn(- nr)$- R).
- postProcess!: % -> %
- from QEtaComputationCategory(F, AB) 
- trace: NonNegativeInteger -> % -> Void
- from QEtaComputationCategory(F, AB) 
- update!: (F, %) -> %
- update!(u, x)adds a new basis element and updates the critical elements accordingly. Note that older basis elements might become critical elements in this process.
QEtaComputationCategory(F, AB)