QEtaComputationModularEquation(C, F, AB, R)ΒΆ

qetasamba.spad line 1307 [edit on github]

QEtaComputationModularEquation is a variant of QEtaComputation in order to compute a modular equation between two elements.

algebraBasis: % -> AB

from QEtaComputationCategory(F, AB)

basis: % -> List F

basis x returns basis(algebraBasis x).

coerce: % -> OutputForm

from CoercibleTo OutputForm

continue?: % -> Boolean

from QEtaComputationCategory(F, AB)

criticalElements?: % -> Boolean

from QEtaComputationCategory(F, AB)

extractNext!: % -> F

from QEtaComputationCategory(F, AB)

initialize: (List F, Integer) -> %

from QEtaComputationCategory(F, AB)

initialize: List F -> %

from QEtaComputationCategory(F, AB)

noTrace: % -> Void

from QEtaComputationCategory(F, AB)

oneStep!: % -> %

from QEtaComputationCategory(F, AB)

oneStepComputation!: (%, % -> F) -> %

from QEtaComputationCategory(F, AB)

oneTracedStep!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> % -> %

from QEtaComputationCategory(F, AB)

oneTracedStepComputation!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> (%, % -> F) -> %

from QEtaComputationCategory(F, AB)

oneVerboseStep!: (NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> % -> %

oneVerboseStep!(ny, n0, nl, nr) is equivalent with oneTracedStep!(trace ny, traceEnter(n0)$R, traceLoop(nl)$R, traceReturn(nr)$R).

postProcess!: % -> %

from QEtaComputationCategory(F, AB)

trace: NonNegativeInteger -> % -> Void

from QEtaComputationCategory(F, AB)

update!: (F, %) -> %

update!(u, x) adds a new basis element and updates the critical elements accordingly. Note that older basis elements might become critical elements in this process.

CoercibleTo OutputForm

QEtaComputationCategory(F, AB)