QEtaComputationModularEquation(C, F, AB, R)ΒΆ
qetasamba.spad line 1307 [edit on github]
F: QEtaGradedAlgebra C
AB: QEtaAlgebraBasisCategory F with
basisElements: % -> XHashTable(Integer, List F)
R: QEtaComputationReductionCategory(F, AB)
QEtaComputationModularEquation is a variant of QEtaComputation in order to compute a modular equation between two elements.
- algebraBasis: % -> AB
from QEtaComputationCategory(F, AB)
- basis: % -> List F
basis x
returns basis(algebraBasisx
).
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- continue?: % -> Boolean
from QEtaComputationCategory(F, AB)
- criticalElements?: % -> Boolean
from QEtaComputationCategory(F, AB)
- extractNext!: % -> F
from QEtaComputationCategory(F, AB)
- initialize: (List F, Integer) -> %
from QEtaComputationCategory(F, AB)
- initialize: List F -> %
from QEtaComputationCategory(F, AB)
- noTrace: % -> Void
from QEtaComputationCategory(F, AB)
- oneStep!: % -> %
from QEtaComputationCategory(F, AB)
- oneStepComputation!: (%, % -> F) -> %
from QEtaComputationCategory(F, AB)
- oneTracedStep!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> % -> %
from QEtaComputationCategory(F, AB)
- oneTracedStepComputation!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> (%, % -> F) -> %
from QEtaComputationCategory(F, AB)
- oneVerboseStep!: (NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> % -> %
oneVerboseStep!(ny, n0, nl, nr)
is equivalent with oneTracedStep!(traceny
, traceEnter(n0
)$R
, traceLoop(nl
)$R
, traceReturn(nr
)$R
).
- postProcess!: % -> %
from QEtaComputationCategory(F, AB)
- trace: NonNegativeInteger -> % -> Void
from QEtaComputationCategory(F, AB)
- update!: (F, %) -> %
update!(u, x)
adds a new basis element and updates the critical elements accordingly. Note that older basis elements might become critical elements in this process.
QEtaComputationCategory(F, AB)