QEtaModularInfinityExpansion(C, QMOD)ΒΆ

qetaquotinf.spad line 399 [edit on github]

undocumented

laurentExpansionInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> QEtaLaurentSeries C

laurentExpansionInfinity: QEtaSpecification -> QEtaLaurentSeries C

modularEtaQuotientInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Finite0Series C if C has CommutativeRing

modularEtaQuotientInfinity(sspec, rspec, m, t) returns the series expansion of etaQuotient(sspec,rspec,m,t)$SymbolicModularEtaQuotientGamma(QMOD) at the cusp infinity.

modularEtaQuotientInfinity: QEtaSpecification -> Finite0Series C if C has CommutativeRing

modularEtaQuotientInfinity(rspec) checks whether rspec specifices modular eta-quotient wrt. QMOD and returns (expansion(etaQuotient(rspec)$EQI(C))$EQI(C))::A1(C).