QEtaModularInfinityExpansion(C, QMOD)ΒΆ
qetaquotinf.spad line 399 [edit on github]
C: Ring
QMOD: QEtaModularCategory
undocumented
laurentExpansionInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> QEtaLaurentSeries C
laurentExpansionInfinity: QEtaSpecification -> QEtaLaurentSeries C
- modularEtaQuotientInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Finite0Series C if C has CommutativeRing
modularEtaQuotientInfinity(sspec, rspec, m, t)
returns the series expansion of etaQuotient(sspec
,rspec
,m
,t
)$SymbolicModularEtaQuotientGamma(QMOD) at the cusp infinity.
- modularEtaQuotientInfinity: QEtaSpecification -> Finite0Series C if C has CommutativeRing
modularEtaQuotientInfinity(rspec)
checks whetherrspec
specifices modular eta-quotientwrt
. QMOD and returns (expansion(etaQuotient(rspec
)$EQI(C
))$EQI(C
))::A1
(C
).