QEtaModularInfinityExpansion(C, QMOD)ΒΆ
qetaquotinf.spad line 399 [edit on github]
C: Ring
QMOD: QEtaModularCategory
undocumented
laurentExpansionInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> QEtaLaurentSeries C
laurentExpansionInfinity: QEtaSpecification -> QEtaLaurentSeries C
- modularEtaQuotientInfinity: (QEtaSpecification, QEtaSpecification, PositiveInteger, NonNegativeInteger) -> Finite0Series C if C has CommutativeRing
modularEtaQuotientInfinity(sspec, rspec, m, t)returns the series expansion of etaQuotient(sspec,rspec,m,t)$SymbolicModularEtaQuotientGamma(QMOD) at the cusp infinity.
- modularEtaQuotientInfinity: QEtaSpecification -> Finite0Series C if C has CommutativeRing
modularEtaQuotientInfinity(rspec)checks whetherrspecspecifices modular eta-quotientwrt. QMOD and returns (expansion(etaQuotient(rspec)$EQI(C))$EQI(C))::A1(C).