QEtaMultiComputationCategory(C, F, AB, R)ΒΆ
qetamultisamba.spad line 429 [edit on github]
- AB: QEtaAlgebraBasisCategory F 
- R: QEtaComputationReductionCategory(F, AB) 
- QEtaMultiCompuationCategory is just for implementing common funtionality. 
- algebraBasis: % -> AB
- from QEtaComputationCategory(F, AB) 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- continue?: % -> Boolean
- from QEtaComputationCategory(F, AB) 
- criticalElements?: % -> Boolean
- from QEtaComputationCategory(F, AB) 
- extractNext!: % -> F
- from QEtaComputationCategory(F, AB) 
- initialize: (List F, Integer) -> %
- from QEtaComputationCategory(F, AB) 
- initialize: List F -> %
- from QEtaComputationCategory(F, AB) 
- nonPositive?: List Integer -> Boolean
- nonPositive?(l)returns- trueif- x<=0for all elements of- l. The empty list returns- true.
- noTrace: % -> Void
- from QEtaComputationCategory(F, AB) 
- oneStep!: % -> %
- from QEtaComputationCategory(F, AB) 
- oneStepComputation!: (%, % -> F) -> %
- from QEtaComputationCategory(F, AB) 
- oneTracedStep!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> % -> %
- from QEtaComputationCategory(F, AB) 
- oneTracedStepComputation!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> (%, % -> F) -> %
- from QEtaComputationCategory(F, AB) 
- oneVerboseStep!: (NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> % -> %
- oneVerboseStep!(ny, n0, nl, nr)is equivalent with oneTracedStep!(trace- ny, traceEnter(- n0)$- R, traceLoop(- nl)$- R, traceReturn(- nr)$- R).
- positive?: List Integer -> Boolean
- positive?(l)returns- trueif- x>0for all elements of- l. The empty list returns- true.
- postProcess!: % -> %
- from QEtaComputationCategory(F, AB) 
- trace: NonNegativeInteger -> % -> Void
- from QEtaComputationCategory(F, AB) 
QEtaComputationCategory(F, AB)