QEtaMultiComputationCategory(C, F, AB, R)ΒΆ
qetamultisamba.spad line 429 [edit on github]
AB: QEtaAlgebraBasisCategory F
R: QEtaComputationReductionCategory(F, AB)
QEtaMultiCompuationCategory is just for implementing common funtionality.
- algebraBasis: % -> AB
from QEtaComputationCategory(F, AB)
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- continue?: % -> Boolean
from QEtaComputationCategory(F, AB)
- criticalElements?: % -> Boolean
from QEtaComputationCategory(F, AB)
- extractNext!: % -> F
from QEtaComputationCategory(F, AB)
- initialize: (List F, Integer) -> %
from QEtaComputationCategory(F, AB)
- initialize: List F -> %
from QEtaComputationCategory(F, AB)
- nonPositive?: List Integer -> Boolean
nonPositive?(l)returnstrueifx<=0for all elements ofl. The empty list returnstrue.
- noTrace: % -> Void
from QEtaComputationCategory(F, AB)
- oneStep!: % -> %
from QEtaComputationCategory(F, AB)
- oneStepComputation!: (%, % -> F) -> %
from QEtaComputationCategory(F, AB)
- oneTracedStep!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> % -> %
from QEtaComputationCategory(F, AB)
- oneTracedStepComputation!: (% -> Void, (F, AB) -> Void, F -> Void, F -> Void) -> (%, % -> F) -> %
from QEtaComputationCategory(F, AB)
- oneVerboseStep!: (NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> % -> %
oneVerboseStep!(ny, n0, nl, nr)is equivalent with oneTracedStep!(traceny, traceEnter(n0)$R, traceLoop(nl)$R, traceReturn(nr)$R).
- positive?: List Integer -> Boolean
positive?(l)returnstrueifx>0for all elements ofl. The empty list returnstrue.
- postProcess!: % -> %
from QEtaComputationCategory(F, AB)
- trace: NonNegativeInteger -> % -> Void
from QEtaComputationCategory(F, AB)
QEtaComputationCategory(F, AB)