SymbolicModularSiftedEtaQuotientΒΆ
SymbolicModularSiftedEtaQuotient holds data to compute an eta quotient expansions of $F_{r, s, m, t}(gamma tau)$ at all cusps of $Gamma_0(N)$. See eqref{eq:F_r-s-m-t(gamma*tau)}.
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- cusps: % -> List Fraction Integer
cusps(x)=cuspsOfGamma0(levelx)$QAuxiliaryModularEtaQuotientPackage.
- elt: (%, Fraction Integer ) -> SymbolicModularSiftedEtaQuotientGamma
x.cusp returns the data corresponding to the respective cusp.
- etaQuotient: (PositiveInteger , List Integer , PositiveInteger , List Integer , PositiveInteger , NonNegativeInteger ) -> %
etaQuotient(nn, r, mm, s, m, t)represents the expansion of $F_{r,s,m,t}(gamma tau)$ for all gamma corresponding to the cusps of $Gamma_0(nn)$.
- etaQuotient: (PositiveInteger , List Integer , PositiveInteger , List Integer , PositiveInteger , NonNegativeInteger , List Fraction Integer ) -> %
etaQuotient(nn, r, mm, s, m, t, cusps)represents the expansion of $F_{r,s,m,t}(gamma tau)$ for all gamma corresponding to the given cusps.- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- level: % -> PositiveInteger
level(x)returnsnnsuch thatxcorresponds to a modular function forGamma_0(nn).
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)returnslcm[minimalRootOfUnity(x.u) foruin cuspsx].