SymbolicModularSiftedEtaQuotientGammaΒΆ
SymbolicModularSiftedEtaQuotientGamma holds data to compute an eta quotient expansions of $F_{r, s, m, t}(gamma tau)$. See eqref{eq:F_r-s-m-t(gamma*tau)} in this file.
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- cofactor: % -> SymbolicSiftedEtaQuotientGamma
cofactor(x)returns the cofactor part to make $F_{r,s,m,t}$ a modular function.
- etaQuotient: (PositiveInteger , List Integer , PositiveInteger , List Integer , PositiveInteger , NonNegativeInteger , Matrix Integer ) -> %
etaQuotient(nn, r, mm, s, m, t, gamma)represents the expansion of $F_{r,s,m,t}(gamma tau)$.
- gamma: % -> Matrix Integer
gamma(x)returns the transformation corresponding tox.- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)returnslcm[minimalRootOfUnity(x.u) foruin orbit(shat,m,t)].
- orbitProduct: % -> SymbolicSiftedEtaQuotientOrbitProductGamma
orbitProduct(x)returns the orbit product part of $F_{r,s,m,t}$.