SymbolicSiftedEtaQuotientGammaΒΆ
SymbolicSiftedEtaQuotientGamma is a generalization of SymbolicEtaQuotientGamma. It holds data to compute an eta quotient expansion of $g_{s,m,t}(gamma tau)$ or $g_{s,m}(gamma tau)$. See eqref{eq:g_s-m-t(gamma*tau)} and eqref{eq:g_s-m(gamma*tau)}.
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- divisors: % -> List PositiveInteger
divisors(x)returns the divisors of level(x) that were given at creation time ofx.
- elt: (%, NonNegativeInteger ) -> SymbolicSiftedEtaQuotientLambdaGamma
x.lambda returns the data corresponding to the respective lambda.
- etaQuotient: (PositiveInteger , List PositiveInteger , List Integer , PositiveInteger , Integer , Matrix Integer ) -> %
etaQuotient(mm, divs, s, m, t, gamma)represents the expansion of $g_{s,m,t}(gamma tau)$.
- exponents: % -> List Integer
exponents(x)returns the list of exponents corresponding to all divisors.
- gamma: % -> Matrix Integer
gamma(x)returns the transformation corresponding tox.- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- level: % -> PositiveInteger
level(x)returns the level of the eta quotient.
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)returnslcm[minimalRootOfUnity(x.lambda) for lambda in 0..m-1].
- multiplier: % -> PositiveInteger
multiplier(x)returns the subsequence multiplier. Returnsm.
- offset: % -> Integer
offset(x)returns the subsequence offset. Returnst.