SymbolicSiftedEtaQuotientLambdaGamma¶
SymbolicSiftedEtaQuotientLambdaGamma is a generalization of SymbolicEtaQuotientGamma. It holds data to compute an eta quotient expansion of g_{s,m,t,lambda}(gamma tau) or of g_{s,m,-,lambda}(gamma tau). See eqref{eq:g_s-m-t-lambda(gamma*tau)} and eqref{eq:g_s-m—lambda(gamma*tau)}.
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- divisors: % -> List PositiveInteger
divisors(x)returns the divisors of level(x) that were given at creation time ofx.
- elt: (%, PositiveInteger ) -> SymbolicSiftedEtaDeltaLambdaGamma
x.delta returns the data corresponding to the respective delta.
- etaQuotient: (PositiveInteger , List PositiveInteger , List Integer , PositiveInteger , Integer , NonNegativeInteger , Matrix Integer ) -> %
etaQuotient(mm, divs, s, m, t, lambda, gamma)represents the expansion of $g_{s,m,t,lambda}(gamma tau)$ in terms of $x= exp(2 piitau/w)$ where w=width(nn,c) and gamma=cuspToMatrix(nn, a/c) for a cusp a/c.
- exponents: % -> List Integer
exponents(x)returns the list of exponents corresponding to all divisors.
- gamma: % -> Matrix Integer
gamma(x)returns the transformation corresponding tox.- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- lambda: % -> NonNegativeInteger
lambda(x)returns lambda- latex: % -> String
- from SetCategory
- level: % -> PositiveInteger
level(x)returns the level of the eta quotient.
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(e)returns the smallest positive integernsuch that the expansion of the function $g_{s,m,t,lambda}(gamma tau)$ corresponding to e=etaQuotient(mm, divs,s,m,t, lambda, gamma) (neglecting the (ctau+d)^*factor) lives inQ[w][[z]] wherewis an-th root of unity andza fractionalqpower.
- multiplier: % -> PositiveInteger
multiplier(x)returns the subsequence multiplier. Returnsm.
- offset: % -> Integer
offset(x)returns the subsequence offset. Returnst.
- qExponent: % -> Fraction Integer
qExponent(e)returns 24 times the order of the expansion ofeinq= exp(2 piitau) while neglecting the (ctau+d) factor. It corresponds to 24 times the exponent of the fourth product of eqref{eq:g_s-m-t-lambda(gamma*tau)}.
- rationalPrefactor: % -> Fraction Integer
rationalPrefactor(x)returns the square of the second product in eqref{eq:g_s-m-t-lambda(gamma*tau)}.