SymbolicSiftedEtaQuotientOrbitProductGammaΒΆ
SymbolicSiftedEtaQuotientOrbitProductGamma holds data to compute an eta quotient expansions of $P_{s, m, t}(gamma tau)$. See eqref{eq:P_s-m-t(gamma*tau)}.}
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- elt: (%, NonNegativeInteger ) -> SymbolicSiftedEtaQuotientGamma
x.ureturns the data corresponding to the respective orbit elementu.
- etaQuotient: (PositiveInteger , List PositiveInteger , List Integer , PositiveInteger , NonNegativeInteger , Matrix Integer ) -> %
etaQuotient(mm, s, m, t, gamma)represents the expansion of $P_{s,m,t}(gamma tau)$.
- exponents: % -> List Integer
exponents(x)returns the list of exponents corresponding to all divisors.
- gamma: % -> Matrix Integer
gamma(x)returns the transformation corresponding tox.- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- level: % -> PositiveInteger
level(x)returns the level of the eta quotient.
- minimalRootOfUnity: % -> PositiveInteger
minimalRootOfUnity(x)returnslcm[minimalRootOfUnity(x.u) foruin orbit(shat,m,t)] where $shat = sum_delta deltas_delta$
- multiplier: % -> PositiveInteger
multiplier(x)returns the subsequence multiplier. Returnsm.
- offset: % -> NonNegativeInteger
offset(x)returns the subsequence offset. Returnst.
- orbit: % -> List NonNegativeInteger
orbit(x)returns $modularOrbit{s,m,t}$ where s=exponents(x), m=multiplier(x), t=offset(x). See definition of orbit in qetakolberg.spad