SymbolicSiftedEtaDeltaLambdaGammaΒΆ
SymbolicSiftedEtaDeltaLambdaGamma is a generalization of SymbolicEtaDeltaGamma. It holds data to compute an eta expansion of $eta_{delta.m,lambda}(gamma tau)$. See eqref{eq:eta_delta-m-lambda(gamma*tau)}.
- =: (%, %) -> Boolean
- from BasicType
- ~=: (%, %) -> Boolean
- from BasicType
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- delta: % -> PositiveInteger
delta(x)returns the corresponding delta.
- eta: (PositiveInteger , PositiveInteger , PositiveInteger , NonNegativeInteger , Matrix Integer ) -> %
eta(mm, delta, m, lambda, gamma)represents the expansion of $eta_{delta,m,lambda}(gamma tau)$ in terms of $q= exp(2 piitau)$.
- gamma: % -> Matrix Integer
gamma(x)returns the transformation corresponding tox.- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState , %) -> HashState
- from SetCategory
- lambda: % -> NonNegativeInteger
lambda(x)returns lambda.- latex: % -> String
- from SetCategory
- level: % -> PositiveInteger
level(x)returns the level of the eta quotient.
- multiplier: % -> PositiveInteger
multiplier(x)returns the subsequence multiplier. Returnsm.
- rationalPrefactor: % -> Fraction Integer
rationalPrefactor(x)returns the square of the second product in eqref{eq:g_r(gamma*tau)}
- udelta: % -> Fraction Integer
- Returns $u_{delta,
m,lambda}$. See eqref{eq:eta_delta-m-lambda(gamma*tau)}.
- upsilonExponent: % -> IntegerMod 24
- Returns $kappa_{gamma,delta,
m,lambda}$. See eqref{eq:eta_delta-m-lambda(gamma*tau)}.