QEtaTopReduction(C, F, AB)¶
qetasamba.spad line 613 [edit on github]
- F: QEtaGradedAlgebra C 
- AB: QEtaAlgebraBasisCategory F 
QEtaTopReduction implements the restricted reduction as described in “Dancing Samba with Ramanujan Partition Congruences” (Journal of Symbolic Computation). doi:10.1016/j.jsc.2017.02.001 http://www.risc.jku.at/publications/download/risc_5338/DancingSambaRamanujan.pdf Here reduce is the same as top-reduce.
- noTrace: F -> Void
- from QEtaComputationReductionCategory(F, AB) 
- noTraceEnter: (F, AB) -> Void
- from QEtaComputationReductionCategory(F, AB) 
- reduce: (F, AB) -> F
- from QEtaComputationReductionCategory(F, AB) 
- reducer: (F, AB) -> Union(F, failed)
- from QEtaReductionCategory(C, F, AB) 
- tailReduce: (F, AB) -> F
- from QEtaReductionCategory(C, F, AB) 
- tailReducible?: (F, Integer, F) -> Boolean
- from QEtaReductionCategory(C, F, AB) 
- topReduce: (F, AB) -> F
- from QEtaReductionCategory(C, F, AB) 
- topReducible?: (F, F, F) -> Boolean
- from QEtaComputationReductionCategory(F, AB) 
- tracedReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
- from QEtaComputationReductionCategory(F, AB) 
- tracedTailReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
- from QEtaReductionCategory(C, F, AB) 
- tracedTopReduce: ((F, AB) -> Void, F -> Void, F -> Void) -> (F, AB) -> F
- from QEtaReductionCategory(C, F, AB) 
- traceEnter: NonNegativeInteger -> (F, AB) -> Void
- from QEtaComputationReductionCategory(F, AB) 
- traceLoop: NonNegativeInteger -> F -> Void
- from QEtaComputationReductionCategory(F, AB) 
- traceReturn: NonNegativeInteger -> F -> Void
- from QEtaComputationReductionCategory(F, AB) 
QEtaComputationReductionCategory(F, AB)
QEtaReductionCategory(C, F, AB)