QEtaSeriesExpansion(C, xiord, CX, xi, QMOD)ΒΆ
qetaquot.spad line 139 [edit on github]
xiord: PositiveInteger
CX: Algebra C
xi: CX
QMOD: QEtaModularCategory
QEtaSeriesExpansion computes an eta quotient expansion of $g_{r,m,lambda}(gamma tau)$, $p_{r,m,t}(gammatau)$, $F_{s,r,m,t}(gammatau)$. See eqref{eq:g_r-m-lambda(gamma*tau)} and eqref{eq:F_s-r-m-t(gamma*tau)}.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- laurent: (QEtaPuiseuxSeries CX, PositiveInteger) -> QEtaLaurentSeries CX
If
p(q)=s(z) is a Puiseux seriespexpressed as a Laurent seriessin the variable z=q^r, then laurent(x,w) returns the laurent serieslsuch thatl(x)=s(z)=p(q) where x=q^(1/w) in caser*wis an integer. It might happen thatr*wis not an integer. That is even to be expected since non-modular eta-quotients involve a factor in terms ofq^(1/24). If r=s/t, then we take only everyt-th term and check that the intermediate terms come indeed with a zero coefficient.
- laurentExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX
laurentExpansion(y)represents theq-expansion of $F_{s,r,m,t}(gammatau)$ given byyin the canonical variables given by the width of the cuspwrt. QMOD.
- laurentExpansionInfinity: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX
laurentExpansionInfinity(y)represents theq-expansion of $F_{s,r,m,t}(tau)$ given byywrt. QMOD. See eqref{eq:F_s-r-m-t(tau)}.
- laurentExpansions: (SymbolicModularEtaQuotient QMOD, List Cusp) -> XHashTable(Cusp, QEtaLaurentSeries CX)
laurentExpansions(y, cusps)represents theq-expansion of $F_{s,r,m,t}(gammatau)$ at the given cusps (which should be a subset of the cusps given byy) in the canonical variables given by the width of the cuspwrt. QMOD.
- laurentExpansions: SymbolicModularEtaQuotient QMOD -> XHashTable(Cusp, QEtaLaurentSeries CX)
laurentExpansions yrepresents theq-expansion of $F_{s,r,m,t}(gammatau)$ at all cusps given byyin the canonical variables given by the width of the cuspwrt. QMOD.
- puiseuxExpansion: (SymbolicEtaQuotientLambdaGamma, Fraction Integer) -> QEtaPuiseuxSeries CX
puiseuxExpansion(y, r)computes the Puiseux expansion of $g_{r,m,lambda(gammatau)$ in terms of $q$ multiplied by $exp(2piir)$. The $(ctau+d)$ factor is missing. See eqref{eq:g_r-m-lambda(gamma*tau)}.
- puiseuxExpansion: SymbolicEtaQuotientGamma -> QEtaPuiseuxSeries CX
puiseuxExpansion(y)computes the Puiseux expansion of theq-expansion of $p_{r,m,t}(gamma tau)$, see eqref{eq:p_r-m-t(gamma*tau)}. The $(ctau+d)$ factor is missing.
- puiseuxExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaPuiseuxSeries CX
puiseuxExpansion(y)represents theq-expansion of $F_{s,r,m,t}(gamma tau)$, see eqref{eq:F_s-r-m-t(gamma*tau)}.
- substitute: (QEtaLaurentSeries CX, Fraction Integer, NonNegativeInteger) -> QEtaPuiseuxSeries CX
If
s(q) is a series inq, then substitute(s,u,v) returns a seriest(q) such thatt(q)=s(q^u*xi^v).