QEtaSeriesExpansion(C, xiord, CX, xi, QMOD)ΒΆ
qetaquot.spad line 139 [edit on github]
xiord: PositiveInteger
CX: Algebra C
xi: CX
QMOD: QEtaModularCategory
QEtaSeriesExpansion computes an eta quotient expansion of $g_
{r
,m
,lambda}(gamma tau)$, $p_
{r
,m
,t
}(gammatau)$, $F_
{s
,r
,m
,t
}(gammatau)$. See eqref{eq:g_r-m
-lambda(gamma*tau)} and eqref{eq:F_s-r
-m
-t
(gamma*tau)}.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- laurent: (QEtaPuiseuxSeries CX, PositiveInteger) -> QEtaLaurentSeries CX
If
p
(q
)=s
(z
) is a Puiseux seriesp
expressed as a Laurent seriess
in the variable z=q^r, then laurent(x
,w
) returns the laurent seriesl
such thatl
(x
)=s
(z
)=p
(q
) where x=q^(1/w) in caser*w
is an integer. It might happen thatr*w
is not an integer. That is even to be expected since non-modular eta-quotients involve a factor in terms ofq^
(1/24). If r=s/t, then we take only everyt
-th term and check that the intermediate terms come indeed with a zero coefficient.
- laurentExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX
laurentExpansion(y)
represents theq
-expansion of $F_
{s
,r
,m
,t
}(gammatau)$ given byy
in the canonical variables given by the width of the cuspwrt
. QMOD.
- laurentExpansionInfinity: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX
laurentExpansionInfinity(y)
represents theq
-expansion of $F_
{s
,r
,m
,t
}(tau)$ given byy
wrt
. QMOD. See eqref{eq:F_s-r
-m
-t
(tau)}.
- laurentExpansions: (SymbolicModularEtaQuotient QMOD, List Cusp) -> XHashTable(Cusp, QEtaLaurentSeries CX)
laurentExpansions(y, cusps)
represents theq
-expansion of $F_
{s
,r
,m
,t
}(gammatau)$ at the given cusps (which should be a subset of the cusps given byy
) in the canonical variables given by the width of the cuspwrt
. QMOD.
- laurentExpansions: SymbolicModularEtaQuotient QMOD -> XHashTable(Cusp, QEtaLaurentSeries CX)
laurentExpansions y
represents theq
-expansion of $F_
{s
,r
,m
,t
}(gammatau)$ at all cusps given byy
in the canonical variables given by the width of the cuspwrt
. QMOD.
- puiseuxExpansion: (SymbolicEtaQuotientLambdaGamma, Fraction Integer) -> QEtaPuiseuxSeries CX
puiseuxExpansion(y, r)
computes the Puiseux expansion of $g_
{r
,m
,lambda(gammatau)$ in terms of $q
$ multiplied by $exp(2pii
r
)$. The $(c
tau+d)$ factor is missing. See eqref{eq:g_r-m
-lambda(gamma*tau)}.
- puiseuxExpansion: SymbolicEtaQuotientGamma -> QEtaPuiseuxSeries CX
puiseuxExpansion(y)
computes the Puiseux expansion of theq
-expansion of $p_
{r
,m
,t
}(gamma tau)$, see eqref{eq:p_r-m
-t
(gamma*tau)}. The $(c
tau+d)$ factor is missing.
- puiseuxExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaPuiseuxSeries CX
puiseuxExpansion(y)
represents theq
-expansion of $F_
{s
,r
,m
,t
}(gamma tau)$, see eqref{eq:F_s-r
-m
-t
(gamma*tau)}.
- substitute: (QEtaLaurentSeries CX, Fraction Integer, NonNegativeInteger) -> QEtaPuiseuxSeries CX
If
s
(q
) is a series inq
, then substitute(s
,u
,v
) returns a seriest
(q
) such thatt
(q
)=s
(q^u*xi^v).