SiftedEtaQuotientGamma(C, mx, CX, xi, LX)ΒΆ
- C: Join(Algebra Fraction Integer , IntegralDomain )
- mx: PositiveInteger
- CX: Algebra C
- xi: CX
- LX: UnivariateLaurentSeriesCategory CX
SiftedEtaQuotientGamma is a generalization of EtaQuotientGamma. It holds data to compute an eta quotient expansion of $g_{s,m,t,lambda}(gamma tau)$, $g_{s,m,t}(gamma tau)$, $F_{r,s,m,t}(gamma tau)$. See eqref{eq:g_s-m-t-lambda(gamma*tau)}.}
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- expansion: % -> LX
expansion(x)returns the Laurent series representation ofxwithout the prefactor corresponding to $(ctau +d)$ in z=q^(1/d) where d=rationalPowerDenominator(x).
- puiseux: (SymbolicModularSiftedEtaQuotientGamma, PositiveInteger ) -> %
puiseux(y, w)represents theq-expansion of $F_{r,s,m,t}(gamma tau)$ at $tau=i infity$.
- puiseux: (SymbolicSiftedEtaQuotientGamma, PositiveInteger ) -> %
puiseux(y, w)represents theq-expansion of $g_{s,m,t}(gamma tau)$ at $tau=i infity$.
- puiseux: (SymbolicSiftedEtaQuotientLambdaGamma, PositiveInteger ) -> %
puiseux(y, w)represents theq-expansion ofg_{s,m,t,lambda}(gamma tau) at tau=i infity.
- puiseux: (SymbolicSiftedEtaQuotientOrbitProductGamma, PositiveInteger ) -> %
puiseux(y, w)represents theq-expansion of $prod_{t'in modularOrbit{s,m,t}}g_{s,m,t}(gamma tau)$ at $tau=i infity$.
- rationalPowerDenominator: % -> PositiveInteger
rationalPowerDenominator(x)returnsdsuch thatxis a Laurent series inq^d.