SiftedEtaQuotientGamma(C, mx, CX, xi, LX)ΒΆ

qetafun.spad line 3200

SiftedEtaQuotientGamma is a generalization of EtaQuotientGamma. It holds data to compute an eta quotient expansion of $g_{s,m,t,lambda}(gamma tau)$, $g_{s,m,t}(gamma tau)$, $F_{r,s,m,t}(gamma tau)$. See eqref{eq:g_s-m-t-lambda(gamma*tau)}.}

coerce: % -> OutputForm
from CoercibleTo OutputForm
expansion: % -> LX
expansion(x) returns the Laurent series representation of x without the prefactor corresponding to $(c tau + d)$ in z=q^(1/d) where d=rationalPowerDenominator(x).
puiseux: (SymbolicModularSiftedEtaQuotientGamma, PositiveInteger ) -> %
puiseux(y, w) represents the q-expansion of $F_{r,s,m,t}(gamma tau)$ at $tau=i infity$.
puiseux: (SymbolicSiftedEtaQuotientGamma, PositiveInteger ) -> %
puiseux(y, w) represents the q-expansion of $g_{s,m,t}(gamma tau)$ at $tau=i infity$.
puiseux: (SymbolicSiftedEtaQuotientLambdaGamma, PositiveInteger ) -> %
puiseux(y, w) represents the q-expansion of g_{s,m,t,lambda}(gamma tau) at tau=i infity.
puiseux: (SymbolicSiftedEtaQuotientOrbitProductGamma, PositiveInteger ) -> %
puiseux(y, w) represents the q-expansion of $prod_{t' in modularOrbit{s,m,t}} g_{s,m,t}(gamma tau)$ at $tau=i infity$.
rationalPowerDenominator: % -> PositiveInteger
rationalPowerDenominator(x) returns d such that x is a Laurent series in q^d.

CoercibleTo OutputForm