SymbolicEtaQuotientQSeriesTools(C, xiord, CX, xi, QMOD)ΒΆ
qetasymbeqqseriestool.spad line 128 [edit on github]
xiord: PositiveInteger
CX: Algebra C
xi: CX
QMOD: QEtaModularCategory
SymbolicEtaQuotientQSeriesTools computes an eta quotient expansion of $g_{r,m,lambda}(gamma tau)$, $p_{r,m,t}(gammatau)$, $F_{s,r,m,t}(gammatau)$. See eqref{eq:g_r-m-lambda(gamma*tau)} and eqref{eq:F_s-r-m-t(gamma*tau)}.
- etaQuotientTraceExpansions: (QEtaSpecification, PositiveInteger, List Cusp) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)
etaQuotientTraceExpansions(spec,mm,spitzen)returns etaQuotientTraceExpansions(spec,mm,gammas) for nn:=level(spec) and gammas:=[cuspToMatrix(nn,c)$QMOD forcinspitzen].
- etaQuotientTraceExpansions: (QEtaSpecification, PositiveInteger, List Matrix Integer) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)
etaQuotientTraceExpansions(spec,mm,gammas)returns expansions of the (modularwrt. QMOD corresponding tonn) eta-quotient given byspecat each gamma ofgammaswhere nn=level(spec). See definition of the trace operator in cite{Kohnen_WeierstrassPointsAtInfinity_2004}. Note that if level(spec)=mmthen etaQuotientTraceExpansions(spec,mm,gammas) is equal to laurentExpansions(y,gammas) for y=etaQuotient(spec,gammas)$SymbolicModularEtaQuotient(QMOD).
- laurentExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX
laurentExpansion(y)represents theq-expansion of $F_{s,r,m,t}(gammatau)$ given byyin the canonical variables given by the width of the cuspwrt. QMOD.
- laurentExpansionInfinity: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX
laurentExpansionInfinity(y)represents theq-expansion of $F_{s,r,m,t}(tau)$ given byywrt. QMOD. See eqref{eq:F_s-r-m-t(tau)}.
- laurentExpansions: (SymbolicModularEtaQuotient QMOD, List Cusp) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)
laurentExpansions(y, spitzen)returns laurentExpansions(y,gammas) for nn:=level(y) and gammas:=[cuspToMatrix(nn,c)$QMOD forcin spitzen].
- laurentExpansions: (SymbolicModularEtaQuotient QMOD, List Matrix Integer) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)
laurentExpansions(y, gammas)represents theq-expansion of $F_{s,r,m,t}(gammatau)$ for each gamma in the canonical variables given by the width of gammawrt. QMOD. It is an error if gammas are not a subset of transformationMatrices(y).
- laurentExpansions: SymbolicModularEtaQuotient QMOD -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)
laurentExpansions yrepresents theq-expansion of $F_{s,r,m,t}(gammatau)$ at all cusps given byyin the canonical variables given by the width of the cuspwrt. QMOD.
- puiseuxExpansion: (SymbolicEtaQuotientLambdaGamma, Fraction Integer) -> QEtaPuiseuxSeries CX
puiseuxExpansion(y, e)computes the Puiseux expansion of $g_{r,m,lambda(gamma tau)$ in terms of $q$ multiplied by $exp(2piie)$. The $(ctau+d)$ factor is missing. See eqref{eq:g_r-m-lambda(gamma*tau)}.
- puiseuxExpansion: SymbolicEtaQuotientGamma -> QEtaPuiseuxSeries CX
puiseuxExpansion(y)computes the Puiseux expansion of theq-expansion of $p_{r,m,t}(gamma tau)$, see eqref{eq:p_r-m-t(gamma*tau)}. The $(ctau+d)$ factor is missing.
- puiseuxExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaPuiseuxSeries CX
puiseuxExpansion(y)represents theq-expansion of $F_{s,r,m,t}(gamma tau)$, see eqref{eq:F_s-r-m-t(gamma*tau)}.
- qPochhammerPart: SymbolicEtaQuotientLambdaGamma -> QEtaPuiseuxSeries CX
qPochhammerPart(y)returns the qPochhammer part of formula eqref{eq:g_r-m-lambda(gamma*tau)}, i.e. a series of order 0 with constant term 1.