SymbolicEtaQuotientQSeriesTools(C, xiord, CX, xi, QMOD)ΒΆ

qetasymbeqqseriestool.spad line 128 [edit on github]

SymbolicEtaQuotientQSeriesTools computes an eta quotient expansion of $g_{r,m,lambda}(gamma tau)$, $p_{r,m,t}(gammatau)$, $F_{s,r,m,t}(gammatau)$. See eqref{eq:g_r-m-lambda(gamma*tau)} and eqref{eq:F_s-r-m-t(gamma*tau)}.

etaQuotientTraceExpansions: (QEtaSpecification, PositiveInteger, List Cusp) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)

etaQuotientTraceExpansions(spec,mm,spitzen) returns etaQuotientTraceExpansions(spec,mm,gammas) for nn:=level(spec) and gammas:=[cuspToMatrix(nn,c)$QMOD for c in spitzen].

etaQuotientTraceExpansions: (QEtaSpecification, PositiveInteger, List Matrix Integer) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)

etaQuotientTraceExpansions(spec,mm,gammas) returns expansions of the (modular wrt. QMOD corresponding to nn) eta-quotient given by spec at each gamma of gammas where nn=level(spec). See definition of the trace operator in cite{Kohnen_WeierstrassPointsAtInfinity_2004}. Note that if level(spec)=mm then etaQuotientTraceExpansions(spec,mm,gammas) is equal to laurentExpansions(y,gammas) for y=etaQuotient(spec,gammas)$SymbolicModularEtaQuotient(QMOD).

laurentExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX

laurentExpansion(y) represents the q-expansion of $F_{s,r,m,t}(gammatau)$ given by y in the canonical variables given by the width of the cusp wrt. QMOD.

laurentExpansionInfinity: SymbolicModularEtaQuotientGamma QMOD -> QEtaLaurentSeries CX

laurentExpansionInfinity(y) represents the q-expansion of $F_{s,r,m,t}(tau)$ given by y wrt. QMOD. See eqref{eq:F_s-r-m-t(tau)}.

laurentExpansions: (SymbolicModularEtaQuotient QMOD, List Cusp) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)

laurentExpansions(y, spitzen) returns laurentExpansions(y,gammas) for nn:=level(y) and gammas:=[cuspToMatrix(nn,c)$QMOD for c in spitzen].

laurentExpansions: (SymbolicModularEtaQuotient QMOD, List Matrix Integer) -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)

laurentExpansions(y, gammas) represents the q-expansion of $F_{s,r,m,t}(gammatau)$ for each gamma in the canonical variables given by the width of gamma wrt. QMOD. It is an error if gammas are not a subset of transformationMatrices(y).

laurentExpansions: SymbolicModularEtaQuotient QMOD -> XHashTable(Matrix Integer, QEtaLaurentSeries CX)

laurentExpansions y represents the q-expansion of $F_{s,r,m,t}(gammatau)$ at all cusps given by y in the canonical variables given by the width of the cusp wrt. QMOD.

puiseuxExpansion: (SymbolicEtaQuotientLambdaGamma, Fraction Integer) -> QEtaPuiseuxSeries CX

puiseuxExpansion(y, e) computes the Puiseux expansion of $g_{r,m,lambda(gamma tau)$ in terms of $q$ multiplied by $exp(2pi i e)$. The $(ctau+d)$ factor is missing. See eqref{eq:g_r-m-lambda(gamma*tau)}.

puiseuxExpansion: SymbolicEtaQuotientGamma -> QEtaPuiseuxSeries CX

puiseuxExpansion(y) computes the Puiseux expansion of the q-expansion of $p_{r,m,t}(gamma tau)$, see eqref{eq:p_r-m-t(gamma*tau)}. The $(ctau+d)$ factor is missing.

puiseuxExpansion: SymbolicModularEtaQuotientGamma QMOD -> QEtaPuiseuxSeries CX

puiseuxExpansion(y) represents the q-expansion of $F_{s,r,m,t}(gamma tau)$, see eqref{eq:F_s-r-m-t(gamma*tau)}.

qPochhammerPart: SymbolicEtaQuotientLambdaGamma -> QEtaPuiseuxSeries CX

qPochhammerPart(y) returns the qPochhammer part of formula eqref{eq:g_r-m-lambda(gamma*tau)}, i.e. a series of order 0 with constant term 1.